import gradio as gr import torch import torchaudio import torchaudio.functional as AF from asr import Transcribe def transcribe(audio_file, lang_id: str): print(f"audio_file={audio_file}") print(lang_id) freq = 16000 # Return the transcript. transcript = "" # load the auido file to tensor waveform, orig_freq = torchaudio.load(audio_file.name) # resample audio to 16Khz if orig_freq != freq: waveform = AF.resample(waveform, orig_freq, freq) return transcriber(waveform, lang_id), audio_file.name if __name__ == "__main__": transcriber = Transcribe() inputs = [gr.File(), gr.Dropdown(choices=["amh", "orm", "som"])] outputs = [ gr.Textbox(label="Transcript"), gr.Audio(label="Audio", type="filepath"), ] app = gr.Interface(transcribe, inputs=inputs, outputs=outputs) app.launch()