Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| This file is part of ComfyUI. | |
| Copyright (C) 2024 Stability AI | |
| This program is free software: you can redistribute it and/or modify | |
| it under the terms of the GNU General Public License as published by | |
| the Free Software Foundation, either version 3 of the License, or | |
| (at your option) any later version. | |
| This program is distributed in the hope that it will be useful, | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| GNU General Public License for more details. | |
| You should have received a copy of the GNU General Public License | |
| along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| """ | |
| import torch | |
| import comfy.model_management | |
| def cast_bias_weight(s, input): | |
| bias = None | |
| non_blocking = comfy.model_management.device_should_use_non_blocking(input.device) | |
| if s.bias is not None: | |
| bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) | |
| if s.bias_function is not None: | |
| bias = s.bias_function(bias) | |
| weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) | |
| if s.weight_function is not None: | |
| weight = s.weight_function(weight) | |
| return weight, bias | |
| class CastWeightBiasOp: | |
| comfy_cast_weights = False | |
| weight_function = None | |
| bias_function = None | |
| class disable_weight_init: | |
| class Linear(torch.nn.Linear, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.linear(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class Conv1d(torch.nn.Conv1d, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return self._conv_forward(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return self._conv_forward(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return self._conv_forward(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| if self.weight is not None: | |
| weight, bias = cast_bias_weight(self, input) | |
| else: | |
| weight = None | |
| bias = None | |
| return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input, output_size=None): | |
| num_spatial_dims = 2 | |
| output_padding = self._output_padding( | |
| input, output_size, self.stride, self.padding, self.kernel_size, | |
| num_spatial_dims, self.dilation) | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.conv_transpose2d( | |
| input, weight, bias, self.stride, self.padding, | |
| output_padding, self.groups, self.dilation) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input, output_size=None): | |
| num_spatial_dims = 1 | |
| output_padding = self._output_padding( | |
| input, output_size, self.stride, self.padding, self.kernel_size, | |
| num_spatial_dims, self.dilation) | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.conv_transpose1d( | |
| input, weight, bias, self.stride, self.padding, | |
| output_padding, self.groups, self.dilation) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| def conv_nd(s, dims, *args, **kwargs): | |
| if dims == 2: | |
| return s.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return s.Conv3d(*args, **kwargs) | |
| else: | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| class manual_cast(disable_weight_init): | |
| class Linear(disable_weight_init.Linear): | |
| comfy_cast_weights = True | |
| class Conv1d(disable_weight_init.Conv1d): | |
| comfy_cast_weights = True | |
| class Conv2d(disable_weight_init.Conv2d): | |
| comfy_cast_weights = True | |
| class Conv3d(disable_weight_init.Conv3d): | |
| comfy_cast_weights = True | |
| class GroupNorm(disable_weight_init.GroupNorm): | |
| comfy_cast_weights = True | |
| class LayerNorm(disable_weight_init.LayerNorm): | |
| comfy_cast_weights = True | |
| class ConvTranspose2d(disable_weight_init.ConvTranspose2d): | |
| comfy_cast_weights = True | |
| class ConvTranspose1d(disable_weight_init.ConvTranspose1d): | |
| comfy_cast_weights = True | |