import gradio as gr import openai import config import os import azure.cognitiveservices.speech as speechsdk openai.api_key = os.environ['OPEN_AI_KEY'] speech_config = speechsdk.SpeechConfig(subscription=os.environ['AZURE_SPEECH_KEY'], region="westeurope") #audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True) speech_config.speech_synthesis_voice_name = "nl-NL-ColetteNeural" speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=None) context = [{"role": "system", "content": 'You are a clever and helpfull conversationalist. \ Respond to all input in 25 words or less. \ Do not mention that you are an AI or service of any kind.'}] def transcribe(model: str, audio: str): audio_file = open(audio, "rb") transcript = openai.Audio.transcribe(model, audio_file) return transcript def gen_response(model: str, context: list): response = openai.ChatCompletion.create(model=model, messages=context) return response["choices"][0]["message"] def gen_voice(response, response_filename): reponse_audio = speech_synthesizer.speak_text_async(response['content']).get() stream = speechsdk.AudioDataStream(reponse_audio) stream.save_to_wav_file(response_filename) def conversation(audio:str): transcript = transcribe("whisper-1", audio) context.append({"role": "user", "content": transcript['text']}) response = gen_response("gpt-3.5-turbo", context) context.append(response) gen_voice(response, "voice.wav") chat_transcript = "" for message in context: if message['role'] != 'system': chat_transcript += message['role'] + ": " + message['content'] + "\n\n" return "voice.wav" # set a custom theme theme = gr.themes.Default().set( body_background_fill="#000000", ) with gr.Blocks(theme=theme) as ui: # advisor image input and microphone input #advisor = gr.Image(value=config.TARS_LOGO).style(width=config.LOGO_IMAGE_WIDTH, height=config.LOGO_IMAGE_HEIGHT) audio_input = gr.Audio(source="microphone", type="filepath") audio_output = gr.Audio() # text transcript output and audio # text_output = gr.Textbox(label="Transcript") btn = gr.Button("Run") btn.click(fn=conversation, inputs=audio_input, outputs=[audio_output]) ui.launch()