diff --git a/G_228800.pth b/G_228800.pth
new file mode 100644
index 0000000000000000000000000000000000000000..1ac4fd999419d14e1a8b1e71a95f6b5d309ac707
--- /dev/null
+++ b/G_228800.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2635ff85250884517c9989ec5c46a2176c103ba22ade4a682e42759815b4c465
+size 629383387
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..3236f02aa0a3de3c9eee4899db8537f1118638d9
--- /dev/null
+++ b/app.py
@@ -0,0 +1,378 @@
+# -*- coding: utf-8 -*-
+import traceback
+import torch
+from scipy.io import wavfile
+import edge_tts
+import subprocess
+import gradio as gr
+import gradio.processing_utils as gr_pu
+import io
+import os
+import logging
+import time
+from pathlib import Path
+import re
+import json
+import argparse
+
+import librosa
+import matplotlib.pyplot as plt
+import numpy as np
+import soundfile
+
+from inference import infer_tool
+from inference import slicer
+from inference.infer_tool import Svc
+
+logging.getLogger('numba').setLevel(logging.WARNING)
+chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
+
+
+logging.getLogger('numba').setLevel(logging.WARNING)
+logging.getLogger('markdown_it').setLevel(logging.WARNING)
+logging.getLogger('urllib3').setLevel(logging.WARNING)
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+logging.getLogger('multipart').setLevel(logging.WARNING)
+
+model = None
+spk = None
+debug = False
+
+
+class HParams():
+ def __init__(self, **kwargs):
+ for k, v in kwargs.items():
+ if type(v) == dict:
+ v = HParams(**v)
+ self[k] = v
+
+ def keys(self):
+ return self.__dict__.keys()
+
+ def items(self):
+ return self.__dict__.items()
+
+ def values(self):
+ return self.__dict__.values()
+
+ def __len__(self):
+ return len(self.__dict__)
+
+ def __getitem__(self, key):
+ return getattr(self, key)
+
+ def __setitem__(self, key, value):
+ return setattr(self, key, value)
+
+ def __contains__(self, key):
+ return key in self.__dict__
+
+ def __repr__(self):
+ return self.__dict__.__repr__()
+
+
+def get_hparams_from_file(config_path):
+ with open(config_path, "r", encoding="utf-8") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams = HParams(**config)
+ return hparams
+
+
+def vc_fn(sid, input_audio, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold):
+ try:
+ if input_audio is None:
+ raise gr.Error("你需要上传音频")
+ if model is None:
+ raise gr.Error("你需要指定模型")
+ sampling_rate, audio = input_audio
+ # print(audio.shape,sampling_rate)
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ temp_path = "temp.wav"
+ soundfile.write(temp_path, audio, sampling_rate, format="wav")
+ _audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,
+ pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold)
+ model.clear_empty()
+ os.remove(temp_path)
+ # 构建保存文件的路径,并保存到results文件夹内
+ try:
+ timestamp = str(int(time.time()))
+ filename = sid + "_" + timestamp + ".wav"
+ # output_file = os.path.join("./results", filename)
+ # soundfile.write(output_file, _audio, model.target_sample, format="wav")
+ soundfile.write('/tmp/'+filename, _audio,
+ model.target_sample, format="wav")
+ # return f"推理成功,音频文件保存为results/{filename}", (model.target_sample, _audio)
+ return f"推理成功,音频文件保存为{filename}", (model.target_sample, _audio)
+ except Exception as e:
+ if debug:
+ traceback.print_exc()
+ return f"文件保存失败,请手动保存", (model.target_sample, _audio)
+ except Exception as e:
+ if debug:
+ traceback.print_exc()
+ raise gr.Error(e)
+
+
+def tts_func(_text, _rate, _voice):
+ # 使用edge-tts把文字转成音频
+ # voice = "zh-CN-XiaoyiNeural"#女性,较高音
+ # voice = "zh-CN-YunxiNeural"#男性
+ voice = "zh-CN-YunxiNeural" # 男性
+ if (_voice == "女"):
+ voice = "zh-CN-XiaoyiNeural"
+ output_file = "/tmp/"+_text[0:10]+".wav"
+ # communicate = edge_tts.Communicate(_text, voice)
+ # await communicate.save(output_file)
+ if _rate >= 0:
+ ratestr = "+{:.0%}".format(_rate)
+ elif _rate < 0:
+ ratestr = "{:.0%}".format(_rate) # 减号自带
+
+ p = subprocess.Popen("edge-tts " +
+ " --text "+_text +
+ " --write-media "+output_file +
+ " --voice "+voice +
+ " --rate="+ratestr, shell=True,
+ stdout=subprocess.PIPE,
+ stdin=subprocess.PIPE)
+ p.wait()
+ return output_file
+
+
+def text_clear(text):
+ return re.sub(r"[\n\,\(\) ]", "", text)
+
+
+def vc_fn2(sid, input_audio, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, text2tts, tts_rate, tts_voice, f0_predictor, enhancer_adaptive_key, cr_threshold):
+ # 使用edge-tts把文字转成音频
+ text2tts = text_clear(text2tts)
+ output_file = tts_func(text2tts, tts_rate, tts_voice)
+
+ # 调整采样率
+ sr2 = 44100
+ wav, sr = librosa.load(output_file)
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2)
+ save_path2 = text2tts[0:10]+"_44k"+".wav"
+ wavfile.write(save_path2, sr2,
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
+ )
+
+ # 读取音频
+ sample_rate, data = gr_pu.audio_from_file(save_path2)
+ vc_input = (sample_rate, data)
+
+ a, b = vc_fn(sid, vc_input, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale,
+ pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold)
+ os.remove(output_file)
+ os.remove(save_path2)
+ return a, b
+
+
+models_info = [
+ {
+ "description": """
+ 这个模型包含公主连结的161名角色。\n\n
+ Space采用CPU推理,速度极慢,建议下载模型本地GPU推理。\n\n
+ """,
+ "model_path": "./G_228800.pth",
+ "config_path": "./config.json",
+ }
+]
+
+model_inferall = []
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--share", action="store_true",
+ default=False, help="share gradio app")
+ # 一定要设置的部分
+ parser.add_argument('-cl', '--clip', type=float,
+ default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
+ parser.add_argument('-n', '--clean_names', type=str, nargs='+',
+ default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
+ parser.add_argument('-t', '--trans', type=int, nargs='+',
+ default=[0], help='音高调整,支持正负(半音)')
+ parser.add_argument('-s', '--spk_list', type=str,
+ nargs='+', default=['nen'], help='合成目标说话人名称')
+
+ # 可选项部分
+ parser.add_argument('-a', '--auto_predict_f0', action='store_true',
+ default=False, help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
+ parser.add_argument('-cm', '--cluster_model_path', type=str,
+ default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
+ parser.add_argument('-cr', '--cluster_infer_ratio', type=float,
+ default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可')
+ parser.add_argument('-lg', '--linear_gradient', type=float, default=0,
+ help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
+ parser.add_argument('-f0p', '--f0_predictor', type=str, default="pm",
+ help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)')
+ parser.add_argument('-eh', '--enhance', action='store_true', default=False,
+ help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
+ parser.add_argument('-shd', '--shallow_diffusion', action='store_true',
+ default=False, help='是否使用浅层扩散,使用后可解决一部分电音问题,默认关闭,该选项打开时,NSF_HIFIGAN增强器将会被禁止')
+
+ # 浅扩散设置
+ parser.add_argument('-dm', '--diffusion_model_path', type=str,
+ default="logs/44k/diffusion/model_0.pt", help='扩散模型路径')
+ parser.add_argument('-dc', '--diffusion_config_path', type=str,
+ default="logs/44k/diffusion/config.yaml", help='扩散模型配置文件路径')
+ parser.add_argument('-ks', '--k_step', type=int,
+ default=100, help='扩散步数,越大越接近扩散模型的结果,默认100')
+ parser.add_argument('-od', '--only_diffusion', action='store_true',
+ default=False, help='纯扩散模式,该模式不会加载sovits模型,以扩散模型推理')
+
+ # 不用动的部分
+ parser.add_argument('-sd', '--slice_db', type=int,
+ default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
+ parser.add_argument('-d', '--device', type=str,
+ default=None, help='推理设备,None则为自动选择cpu和gpu')
+ parser.add_argument('-ns', '--noice_scale', type=float,
+ default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
+ parser.add_argument('-p', '--pad_seconds', type=float, default=0.5,
+ help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
+ parser.add_argument('-wf', '--wav_format', type=str,
+ default='flac', help='音频输出格式')
+ parser.add_argument('-lgr', '--linear_gradient_retain', type=float,
+ default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
+ parser.add_argument('-eak', '--enhancer_adaptive_key',
+ type=int, default=0, help='使增强器适应更高的音域(单位为半音数)|默认为0')
+ parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,
+ help='F0过滤阈值,只有使用crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音')
+ args = parser.parse_args()
+ categories = ["Princess Connect! Re:Dive"]
+ others = {
+ "None": "https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-pcr",
+ }
+ for info in models_info:
+ config_path = info['config_path']
+ model_path = info['model_path']
+ description = info['description']
+ clean_names = args.clean_names
+ trans = args.trans
+ spk_list = list(get_hparams_from_file(config_path).spk.keys())
+ slice_db = args.slice_db
+ wav_format = args.wav_format
+ auto_predict_f0 = args.auto_predict_f0
+ cluster_infer_ratio = args.cluster_infer_ratio
+ noice_scale = args.noice_scale
+ pad_seconds = args.pad_seconds
+ clip = args.clip
+ lg = args.linear_gradient
+ lgr = args.linear_gradient_retain
+ f0p = args.f0_predictor
+ enhance = args.enhance
+ enhancer_adaptive_key = args.enhancer_adaptive_key
+ cr_threshold = args.f0_filter_threshold
+ diffusion_model_path = args.diffusion_model_path
+ diffusion_config_path = args.diffusion_config_path
+ k_step = args.k_step
+ only_diffusion = args.only_diffusion
+ shallow_diffusion = args.shallow_diffusion
+
+ model = Svc(model_path, config_path, args.device, args.cluster_model_path, enhance,
+ diffusion_model_path, diffusion_config_path, shallow_diffusion, only_diffusion)
+
+ model_inferall.append((description, spk_list, model))
+
+ app = gr.Blocks()
+ with app:
+ gr.Markdown(
+ "#
so-vits-svc-models-pcr\n"
+ "# 注意!!!!!Space采用CPU推理,速度极慢,建议下载模型使用本地GPU推理。\n"
+ "## Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
+ "## 请不要生成会对个人以及组织造成侵害的内容\n\n"
+ "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)\n\n"
+ "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-pcr?duplicate=true)\n\n"
+ "[![Finetune your own model](https://badgen.net/badge/icon/github?icon=github&label=Finetune%20your%20own%20model)](https://github.com/Plachtaa/VITS-fast-fine-tuning)"
+ )
+ gr.Markdown("# Princess Connect! Re:Dive\n\n"
+ )
+ with gr.Tabs():
+ for category in categories:
+ with gr.TabItem(category):
+ for i, (description, speakers, model) in enumerate(
+ model_inferall):
+ gr.Markdown(description)
+ with gr.Row():
+ with gr.Column():
+ # textbox = gr.TextArea(label="Text",
+ # placeholder="Type your sentence here ",
+ # value="新たなキャラを解放できるようになったようですね。", elem_id=f"tts-input")
+
+ gr.Markdown(value="""
+ 推理设置
+ """)
+ sid = gr.Dropdown(
+ choices=speakers, value=speakers[0], label='角色选择')
+ auto_f0 = gr.Checkbox(
+ label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False)
+ f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=[
+ "pm", "dio", "harvest", "crepe"], value="pm")
+ vc_transform = gr.Number(
+ label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
+ cluster_ratio = gr.Number(
+ label="聚类模型混合比例,0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
+ slice_db = gr.Number(label="切片阈值", value=-40)
+ noise_scale = gr.Number(
+ label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
+ with gr.Column():
+ pad_seconds = gr.Number(
+ label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
+ cl_num = gr.Number(
+ label="音频自动切片,0为不切片,单位为秒(s)", value=0)
+ lg_num = gr.Number(
+ label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
+ lgr_num = gr.Number(
+ label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75)
+ enhancer_adaptive_key = gr.Number(
+ label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0)
+ cr_threshold = gr.Number(
+ label="F0过滤阈值,只有启动crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音", value=0.05)
+ with gr.Tabs():
+ with gr.TabItem("音频转音频"):
+ vc_input3 = gr.Audio(label="选择音频")
+ vc_submit = gr.Button(
+ "音频转换", variant="primary")
+ with gr.TabItem("文字转音频"):
+ text2tts = gr.Textbox(
+ label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪")
+ tts_rate = gr.Number(label="tts语速", value=0)
+ tts_voice = gr.Radio(label="性别", choices=[
+ "男", "女"], value="男")
+ vc_submit2 = gr.Button(
+ "文字转换", variant="primary")
+ with gr.Row():
+ with gr.Column():
+ vc_output1 = gr.Textbox(label="Output Message")
+ with gr.Column():
+ vc_output2 = gr.Audio(
+ label="Output Audio", interactive=False)
+
+ vc_submit.click(vc_fn, [sid, vc_input3, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds,
+ cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold], [vc_output1, vc_output2])
+ vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num,
+ lg_num, lgr_num, text2tts, tts_rate, tts_voice, f0_predictor, enhancer_adaptive_key, cr_threshold], [vc_output1, vc_output2])
+ # gr.Examples(
+ # examples=example,
+ # inputs=[textbox, char_dropdown, language_dropdown,
+ # duration_slider, symbol_input],
+ # outputs=[text_output, audio_output],
+ # fn=tts_fn
+ # )
+ for category, link in others.items():
+ with gr.TabItem(category):
+ gr.Markdown(
+ f'''
+
+ Click to Go
+
+
+
+ '''
+ )
+
+ app.queue(concurrency_count=3).launch(show_api=False, share=args.share)
diff --git a/cluster/__init__.py b/cluster/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1b9bde04e73e9218a5d534227caa4c25332f424
--- /dev/null
+++ b/cluster/__init__.py
@@ -0,0 +1,29 @@
+import numpy as np
+import torch
+from sklearn.cluster import KMeans
+
+def get_cluster_model(ckpt_path):
+ checkpoint = torch.load(ckpt_path)
+ kmeans_dict = {}
+ for spk, ckpt in checkpoint.items():
+ km = KMeans(ckpt["n_features_in_"])
+ km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
+ km.__dict__["_n_threads"] = ckpt["_n_threads"]
+ km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
+ kmeans_dict[spk] = km
+ return kmeans_dict
+
+def get_cluster_result(model, x, speaker):
+ """
+ x: np.array [t, 256]
+ return cluster class result
+ """
+ return model[speaker].predict(x)
+
+def get_cluster_center_result(model, x,speaker):
+ """x: np.array [t, 256]"""
+ predict = model[speaker].predict(x)
+ return model[speaker].cluster_centers_[predict]
+
+def get_center(model, x,speaker):
+ return model[speaker].cluster_centers_[x]
diff --git a/cluster/kmeans.py b/cluster/kmeans.py
new file mode 100644
index 0000000000000000000000000000000000000000..6111ea45e66a15d41b5b904be6f75affd3c4369f
--- /dev/null
+++ b/cluster/kmeans.py
@@ -0,0 +1,201 @@
+import math,pdb
+import torch,pynvml
+from torch.nn.functional import normalize
+from time import time
+import numpy as np
+# device=torch.device("cuda:0")
+def _kpp(data: torch.Tensor, k: int, sample_size: int = -1):
+ """ Picks k points in the data based on the kmeans++ method.
+
+ Parameters
+ ----------
+ data : torch.Tensor
+ Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
+ data, rank 2 multidimensional data, in which case one
+ row is one observation.
+ k : int
+ Number of samples to generate.
+ sample_size : int
+ sample data to avoid memory overflow during calculation
+
+ Returns
+ -------
+ init : ndarray
+ A 'k' by 'N' containing the initial centroids.
+
+ References
+ ----------
+ .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
+ careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
+ on Discrete Algorithms, 2007.
+ .. [2] scipy/cluster/vq.py: _kpp
+ """
+ batch_size=data.shape[0]
+ if batch_size>sample_size:
+ data = data[torch.randint(0, batch_size,[sample_size], device=data.device)]
+ dims = data.shape[1] if len(data.shape) > 1 else 1
+ init = torch.zeros((k, dims)).to(data.device)
+ r = torch.distributions.uniform.Uniform(0, 1)
+ for i in range(k):
+ if i == 0:
+ init[i, :] = data[torch.randint(data.shape[0], [1])]
+ else:
+ D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0)
+ probs = D2 / torch.sum(D2)
+ cumprobs = torch.cumsum(probs, dim=0)
+ init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))]
+ return init
+class KMeansGPU:
+ '''
+ Kmeans clustering algorithm implemented with PyTorch
+
+ Parameters:
+ n_clusters: int,
+ Number of clusters
+
+ max_iter: int, default: 100
+ Maximum number of iterations
+
+ tol: float, default: 0.0001
+ Tolerance
+
+ verbose: int, default: 0
+ Verbosity
+
+ mode: {'euclidean', 'cosine'}, default: 'euclidean'
+ Type of distance measure
+
+ init_method: {'random', 'point', '++'}
+ Type of initialization
+
+ minibatch: {None, int}, default: None
+ Batch size of MinibatchKmeans algorithm
+ if None perform full KMeans algorithm
+
+ Attributes:
+ centroids: torch.Tensor, shape: [n_clusters, n_features]
+ cluster centroids
+ '''
+ def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")):
+ self.n_clusters = n_clusters
+ self.max_iter = max_iter
+ self.tol = tol
+ self.verbose = verbose
+ self.mode = mode
+ self.device=device
+ pynvml.nvmlInit()
+ gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index)
+ info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle)
+ self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024)
+ print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch)
+
+ @staticmethod
+ def cos_sim(a, b):
+ """
+ Compute cosine similarity of 2 sets of vectors
+
+ Parameters:
+ a: torch.Tensor, shape: [m, n_features]
+
+ b: torch.Tensor, shape: [n, n_features]
+ """
+ return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1)
+
+ @staticmethod
+ def euc_sim(a, b):
+ """
+ Compute euclidean similarity of 2 sets of vectors
+ Parameters:
+ a: torch.Tensor, shape: [m, n_features]
+ b: torch.Tensor, shape: [n, n_features]
+ """
+ return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :]
+
+ def max_sim(self, a, b):
+ """
+ Compute maximum similarity (or minimum distance) of each vector
+ in a with all of the vectors in b
+ Parameters:
+ a: torch.Tensor, shape: [m, n_features]
+ b: torch.Tensor, shape: [n, n_features]
+ """
+ if self.mode == 'cosine':
+ sim_func = self.cos_sim
+ elif self.mode == 'euclidean':
+ sim_func = self.euc_sim
+ sim = sim_func(a, b)
+ max_sim_v, max_sim_i = sim.max(dim=-1)
+ return max_sim_v, max_sim_i
+
+ def fit_predict(self, X):
+ """
+ Combination of fit() and predict() methods.
+ This is faster than calling fit() and predict() seperately.
+ Parameters:
+ X: torch.Tensor, shape: [n_samples, n_features]
+ centroids: {torch.Tensor, None}, default: None
+ if given, centroids will be initialized with given tensor
+ if None, centroids will be randomly chosen from X
+ Return:
+ labels: torch.Tensor, shape: [n_samples]
+
+ mini_=33kk/k*remain
+ mini=min(mini_,fea_shape)
+ offset=log2(k/1000)*1.5
+ kpp_all=min(mini_*10/offset,fea_shape)
+ kpp_sample=min(mini_/12/offset,fea_shape)
+ """
+ assert isinstance(X, torch.Tensor), "input must be torch.Tensor"
+ assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point"
+ assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] "
+ # print("verbose:%s"%self.verbose)
+
+ offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2)
+ with torch.no_grad():
+ batch_size= X.shape[0]
+ # print(self.minibatch, int(self.minibatch * 10 / offset), batch_size)
+ start_time = time()
+ if (self.minibatch*10//offset< batch_size):
+ x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device)
+ else:
+ x = X.to(self.device)
+ # print(x.device)
+ self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size))
+ del x
+ torch.cuda.empty_cache()
+ # self.centroids = self.centroids.to(self.device)
+ num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1
+ closest = None#[3098036]#int64
+ if(self.minibatch>=batch_size//2 and self.minibatch=batch_size):
+ X=X.to(self.device)
+ for i in range(self.max_iter):
+ iter_time = time()
+ if self.minibatch= 2:
+ print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4))
+ if error <= self.tol:
+ break
+
+ if self.verbose >= 1:
+ print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters')
+ return closest
diff --git a/cluster/train_cluster.py b/cluster/train_cluster.py
new file mode 100644
index 0000000000000000000000000000000000000000..8644566388a4107c4442da14c0de090bcd4a91b8
--- /dev/null
+++ b/cluster/train_cluster.py
@@ -0,0 +1,84 @@
+import time,pdb
+import tqdm
+from time import time as ttime
+import os
+from pathlib import Path
+import logging
+import argparse
+from kmeans import KMeansGPU
+import torch
+import numpy as np
+from sklearn.cluster import KMeans,MiniBatchKMeans
+
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+from time import time as ttime
+import pynvml,torch
+
+def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False,use_gpu=False):#gpu_minibatch真拉,虽然库支持但是也不考虑
+ logger.info(f"Loading features from {in_dir}")
+ features = []
+ nums = 0
+ for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
+ # for name in os.listdir(in_dir):
+ # path="%s/%s"%(in_dir,name)
+ features.append(torch.load(path,map_location="cpu").squeeze(0).numpy().T)
+ # print(features[-1].shape)
+ features = np.concatenate(features, axis=0)
+ print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
+ features = features.astype(np.float32)
+ logger.info(f"Clustering features of shape: {features.shape}")
+ t = time.time()
+ if(use_gpu==False):
+ if use_minibatch:
+ kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
+ else:
+ kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
+ else:
+ kmeans = KMeansGPU(n_clusters=n_clusters, mode='euclidean', verbose=2 if verbose else 0,max_iter=500,tol=1e-2)#
+ features=torch.from_numpy(features)#.to(device)
+ labels = kmeans.fit_predict(features)#
+
+ print(time.time()-t, "s")
+
+ x = {
+ "n_features_in_": kmeans.n_features_in_ if use_gpu==False else features.shape[1],
+ "_n_threads": kmeans._n_threads if use_gpu==False else 4,
+ "cluster_centers_": kmeans.cluster_centers_ if use_gpu==False else kmeans.centroids.cpu().numpy(),
+ }
+ print("end")
+
+ return x
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--dataset', type=Path, default="./dataset/44k",
+ help='path of training data directory')
+ parser.add_argument('--output', type=Path, default="logs/44k",
+ help='path of model output directory')
+ parser.add_argument('--gpu',action='store_true', default=False ,
+ help='to use GPU')
+
+
+ args = parser.parse_args()
+
+ checkpoint_dir = args.output
+ dataset = args.dataset
+ use_gpu = args.gpu
+ n_clusters = 10000
+
+ ckpt = {}
+ for spk in os.listdir(dataset):
+ if os.path.isdir(dataset/spk):
+ print(f"train kmeans for {spk}...")
+ in_dir = dataset/spk
+ x = train_cluster(in_dir, n_clusters,use_minibatch=False,verbose=False,use_gpu=use_gpu)
+ ckpt[spk] = x
+
+ checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
+ checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
+ torch.save(
+ ckpt,
+ checkpoint_path,
+ )
+
diff --git a/config.json b/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..e24656c7021d7a3e12a144c9bb34ead1aec44fc5
--- /dev/null
+++ b/config.json
@@ -0,0 +1,256 @@
+{
+ "train": {
+ "log_interval": 200,
+ "eval_interval": 800,
+ "seed": 1234,
+ "epochs": 10000,
+ "learning_rate": 0.0001,
+ "betas": [
+ 0.8,
+ 0.99
+ ],
+ "eps": 1e-09,
+ "batch_size": 6,
+ "fp16_run": false,
+ "lr_decay": 0.999875,
+ "segment_size": 10240,
+ "init_lr_ratio": 1,
+ "warmup_epochs": 0,
+ "c_mel": 45,
+ "c_kl": 1.0,
+ "use_sr": true,
+ "max_speclen": 512,
+ "port": "8976",
+ "keep_ckpts": 3,
+ "all_in_mem": false
+ },
+ "data": {
+ "training_files": "filelists/train.txt",
+ "validation_files": "filelists/val.txt",
+ "max_wav_value": 32768.0,
+ "sampling_rate": 44100,
+ "filter_length": 2048,
+ "hop_length": 512,
+ "win_length": 2048,
+ "n_mel_channels": 80,
+ "mel_fmin": 0.0,
+ "mel_fmax": 22050
+ },
+ "model": {
+ "inter_channels": 192,
+ "hidden_channels": 192,
+ "filter_channels": 768,
+ "n_heads": 2,
+ "n_layers": 6,
+ "kernel_size": 3,
+ "p_dropout": 0.1,
+ "resblock": "1",
+ "resblock_kernel_sizes": [
+ 3,
+ 7,
+ 11
+ ],
+ "resblock_dilation_sizes": [
+ [
+ 1,
+ 3,
+ 5
+ ],
+ [
+ 1,
+ 3,
+ 5
+ ],
+ [
+ 1,
+ 3,
+ 5
+ ]
+ ],
+ "upsample_rates": [
+ 8,
+ 8,
+ 2,
+ 2,
+ 2
+ ],
+ "upsample_initial_channel": 512,
+ "upsample_kernel_sizes": [
+ 16,
+ 16,
+ 4,
+ 4,
+ 4
+ ],
+ "n_layers_q": 3,
+ "use_spectral_norm": false,
+ "gin_channels": 768,
+ "ssl_dim": 768,
+ "n_speakers": 161,
+ "speech_encoder": "vec768l12",
+ "speaker_embedding": false
+ },
+ "spk": {
+ "\u83c8\u6bd4\u8389\u65af\u5854\uff08Overload\uff09": 0,
+ "\u94c3\u5948\uff08\u590f\u65e5\uff09": 1,
+ "\u674f\u5948": 2,
+ "\u96ea\u83f2": 3,
+ "\u53ef\u53ef\u841d": 4,
+ "\u83c8\u6bd4\u8389\u65af\u5854": 5,
+ "\u7eeb\u97f3\uff08\u5723\u8bde\u8282\uff09": 6,
+ "\u78a7\uff08\u63d2\u73ed\u751f\uff09": 7,
+ "\u5609\u591c": 8,
+ "\u955c\u534e\uff08\u4e07\u5723\u8282\uff09": 9,
+ "\u73e0\u5e0c": 10,
+ "\u671b\uff08\u590f\u65e5\uff09": 11,
+ "\u94c3\u8393": 12,
+ "\u771f\u7434\uff08\u590f\u65e5\uff09": 13,
+ "\u9759\u6d41\uff08\u60c5\u4eba\u8282\uff09": 14,
+ "\u54b2\u604b": 15,
+ "\u8389\u739b": 16,
+ "\u9999\u6f84\uff08\u590f\u65e5\uff09": 17,
+ "\u5343\u6b4c": 18,
+ "\u5fcd": 19,
+ "\u4f9d\u91cc": 20,
+ "\u4f69\u53ef\u8389\u59c6\uff08\u65b0\u5e74\uff09": 21,
+ "\u80e1\u6843": 22,
+ "\u667a\uff08\u9b54\u6cd5\u5c11\u5973\uff09": 23,
+ "\u4f18\u8863": 24,
+ "\u601c\uff08\u4e07\u5723\u8282\uff09": 25,
+ "\u681e": 26,
+ "\u9999\u7ec7\uff08\u590f\u65e5\uff09": 27,
+ "\u7948\u68a8\uff08\u65f6\u95f4\u65c5\u884c\uff09": 28,
+ "\u54b2\u604b\uff08\u590f\u65e5\uff09": 29,
+ "\u94c3\u5948": 30,
+ "\u771f\u6b65\uff08\u590f\u65e5\uff09": 31,
+ "\u4e9a\u91cc\u838e": 32,
+ "\u955c\u534e": 33,
+ "\u672a\u594f\u5e0c": 34,
+ "\u4f0a\u8389\u4e9a\uff08\u5723\u8bde\u8282\uff09": 35,
+ "\u7f8e\u91cc": 36,
+ "\u4f3c\u4f3c\u82b1": 37,
+ "\u514b\u8389\u4e1d\u63d0\u5a1c\uff08\u5723\u8bde\u8282\uff09": 38,
+ "\u7f8e\u51ac\uff08\u590f\u65e5\uff09": 39,
+ "\u8389\u739b\uff08\u7070\u59d1\u5a18\uff09": 40,
+ "\u94c3\u8393\uff08\u590f\u65e5\uff09": 41,
+ "\u53e4\u857e\u96c5": 42,
+ "\u7f8e\u7f8e\uff08\u4e07\u5723\u8282\uff09": 43,
+ "\u5343\u6b4c\uff08\u5723\u8bde\u8282\uff09": 44,
+ "\u78a7": 45,
+ "\u96ea": 46,
+ "\u60e0\u7406\u5b50\uff08\u60c5\u4eba\u8282\uff09": 47,
+ "\u4f0a\u7eea": 48,
+ "\u62c9\u59c6": 49,
+ "\u4e03\u4e03\u9999\uff08\u590f\u65e5\uff09": 50,
+ "\u94c3\u8393\uff08\u65b0\u5e74\uff09": 51,
+ "\u94c3\uff08\u6e38\u9a91\u5175\uff09": 52,
+ "\u73af\u5948": 53,
+ "\u60e0\u7406\u5b50": 54,
+ "\u53ef\u53ef\u841d\uff08\u793c\u670d\uff09": 55,
+ "\u4f18\u8863\uff08\u65b0\u5e74\uff09": 56,
+ "\u671b\uff08\u5723\u8bde\u8282\uff09": 57,
+ "\u53ef\u53ef\u841d\uff08\u516c\u4e3b\uff09": 58,
+ "\u7eaf\uff08\u590f\u65e5\uff09": 59,
+ "\u73af\u5948\uff08\u632f\u8896\uff09": 60,
+ "\u54b2\u604b\uff08\u5723\u8bde\u8282\uff09": 61,
+ "\u9732\u5a1c": 62,
+ "\u9999\u6f84\uff08\u9b54\u6cd5\u5c11\u5973\uff09": 63,
+ "\u59ec\u5854": 64,
+ "\u77db\u4f9d\u672a\uff08\u65b0\u5e74\uff09": 65,
+ "\u681e\uff08\u9b54\u6cd5\u5c11\u5973\uff09": 66,
+ "\u771f\u6b65\uff08\u7070\u59d1\u5a18\uff09": 67,
+ "\u601c\uff08\u65b0\u5e74\uff09": 68,
+ "\u5343\u6b4c\uff08\u590f\u65e5\uff09": 69,
+ "\u7948\u68a8": 70,
+ "\u7531\u52a0\u8389": 71,
+ "\u4f69\u53ef\u8389\u59c6\uff08\u590f\u65e5\uff09": 72,
+ "\u6b65\u7f8e\uff08\u4ed9\u5883\uff09": 73,
+ "\u53ef\u53ef\u841d\uff08\u590f\u65e5\uff09": 74,
+ "\u7eeb\u97f3": 75,
+ "\u7531\u52a0\u8389\uff08\u5723\u8bde\u8282\uff09": 76,
+ "\u771f\u9633": 77,
+ "\u96f7\u59c6": 78,
+ "\u831c\u91cc": 79,
+ "\u94c3": 80,
+ "\u51db\uff08\u5076\u50cf\u5927\u5e08\uff09": 81,
+ "\u51ef\u9732": 82,
+ "\u514b\u7f57\u4f9d\uff08\u5723\u5b66\u796d\uff09": 83,
+ "\u79cb\u4e43": 84,
+ "\u514b\u8389\u4e1d\u63d0\u5a1c": 85,
+ "\u4f69\u53ef\u8389\u59c6": 86,
+ "\u9732": 87,
+ "\u83ab\u59ae\u5361": 88,
+ "\u7483\u4e43": 89,
+ "\u9759\u6d41\uff08\u590f\u65e5\uff09": 90,
+ "\u7eba\u5e0c\uff08\u4e07\u5723\u8282\uff09": 91,
+ "\u9999\u6f84": 92,
+ "\u7f8e\u54b2": 93,
+ "\u7f8e\u91cc\uff08\u590f\u65e5\uff09": 94,
+ "\u667a": 95,
+ "\u521d\u97f3": 96,
+ "\u7483\u4e43\uff08\u4ed9\u5883\uff09": 97,
+ "\u536f\u6708\uff08\u5076\u50cf\u5927\u5e08\uff09": 98,
+ "\u7a7a\u82b1": 99,
+ "\u73e0\u5e0c\uff08\u590f\u65e5\uff09": 100,
+ "\u7eaf": 101,
+ "\u7f8e\u7f8e": 102,
+ "\u5fcd\uff08\u4e07\u5723\u8282\uff09": 103,
+ "\u59ae\u4fac\uff08\u5927\u6c5f\u6237\uff09": 104,
+ "\u5343\u7231\u7460": 105,
+ "\u53ef\u53ef\u841d\uff08\u65b0\u5e74\uff09": 106,
+ "\u601c\uff08\u516c\u4e3b\uff09": 107,
+ "\u672a\u594f\u5e0c\u3001\u7f8e\u7f8e\u3001\u955c\u534e": 108,
+ "\u4f0a\u8389\u4e9a": 109,
+ "\u671b": 110,
+ "\u4f18\u8863\uff08\u516c\u4e3b\uff09": 111,
+ "\u51ef\u9732\uff08\u516c\u4e3b\uff09": 112,
+ "\u514b\u7f57\u4f9d": 113,
+ "\u79cb\u4e43\uff08\u5723\u8bde\u8282\uff09": 114,
+ "\u4f18\u8863\uff08\u793c\u670d\uff09": 115,
+ "\u674f\u5948\uff08\u590f\u65e5\uff09": 116,
+ "\u9759\u6d41": 117,
+ "\u672a\u594f\u5e0c\uff08\u4e07\u5723\u8282\uff09": 118,
+ "\u831c\u91cc\uff08\u5929\u4f7f\uff09": 119,
+ "\u5bab\u5b50": 120,
+ "\u65e5\u548c\u8389\uff08\u65b0\u5e74\uff09": 121,
+ "\u4f18\u59ae": 122,
+ "\u5b89": 123,
+ "\u6d41\u590f\uff08\u590f\u65e5\uff09": 124,
+ "\u7f8e\u51ac\uff08\u5de5\u4f5c\u670d\uff09": 125,
+ "\u7f8e\u51ac": 126,
+ "\u521d\u97f3\uff08\u590f\u65e5\uff09": 127,
+ "\u77db\u4f9d\u672a": 128,
+ "\u51ef\u9732\uff08\u590f\u65e5\uff09": 129,
+ "\u83ab\u59ae\u5361\uff08\u9b54\u6cd5\u5c11\u5973\uff09": 130,
+ "\u9999\u7ec7": 131,
+ "\u5bab\u5b50\uff08\u4e07\u5723\u8282\uff09": 132,
+ "\u7f8e\u54b2\uff08\u4e07\u5723\u8282\uff09": 133,
+ "\u59ae\u4fac": 134,
+ "\u601c": 135,
+ "\u771f\u9633\uff08\u6e38\u9a91\u5175\uff09": 136,
+ "\u78a7\uff08\u5de5\u4f5c\u670d\uff09": 137,
+ "\u65e5\u548c\u8389": 138,
+ "\u4e03\u4e03\u9999": 139,
+ "\u771f\u7434": 140,
+ "\u6b65\u7f8e": 141,
+ "\u6df1\u6708": 142,
+ "\u65e5\u548c\u8389\uff08\u516c\u4e3b\uff09": 143,
+ "\u4f0a\u7eea\uff08\u590f\u65e5\uff09": 144,
+ "\u8309\u8389": 145,
+ "\u4f69\u53ef\u8389\u59c6\uff08\u516c\u4e3b\uff09": 146,
+ "\u7a7a\u82b1\uff08\u5927\u6c5f\u6237\uff09": 147,
+ "\u60e0\u7406\u5b50\uff08\u590f\u65e5\uff09": 148,
+ "\u51ef\u9732\uff08\u65b0\u5e74\uff09": 149,
+ "\u7231\u871c\u8389\u96c5": 150,
+ "\u4f9d\u91cc\uff08\u5929\u4f7f\uff09": 151,
+ "\u8309\u8389\uff08\u4e07\u5723\u8282\uff09": 152,
+ "\u771f\u7434\uff08\u7070\u59d1\u5a18\uff09": 153,
+ "\u7eba\u5e0c": 154,
+ "\u771f\u6b65": 155,
+ "\u6d41\u590f": 156,
+ "\u4f3c\u4f3c\u82b1\uff08\u65b0\u5e74\uff09": 157,
+ "\u672a\u592e\uff08\u5076\u50cf\u5927\u5e08\uff09": 158,
+ "\u80e1\u6843\uff08\u5723\u8bde\u8282\uff09": 159,
+ "\u5343\u7231\u7460\uff08\u5723\u5b66\u796d\uff09": 160
+ }
+}
\ No newline at end of file
diff --git a/diffusion/__init__.py b/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/diffusion/data_loaders.py b/diffusion/data_loaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..bf18572329019d7a8f1df01799eda207c16dd7ff
--- /dev/null
+++ b/diffusion/data_loaders.py
@@ -0,0 +1,284 @@
+import os
+import random
+import re
+import numpy as np
+import librosa
+import torch
+import random
+from utils import repeat_expand_2d
+from tqdm import tqdm
+from torch.utils.data import Dataset
+
+def traverse_dir(
+ root_dir,
+ extensions,
+ amount=None,
+ str_include=None,
+ str_exclude=None,
+ is_pure=False,
+ is_sort=False,
+ is_ext=True):
+
+ file_list = []
+ cnt = 0
+ for root, _, files in os.walk(root_dir):
+ for file in files:
+ if any([file.endswith(f".{ext}") for ext in extensions]):
+ # path
+ mix_path = os.path.join(root, file)
+ pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
+
+ # amount
+ if (amount is not None) and (cnt == amount):
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+ # check string
+ if (str_include is not None) and (str_include not in pure_path):
+ continue
+ if (str_exclude is not None) and (str_exclude in pure_path):
+ continue
+
+ if not is_ext:
+ ext = pure_path.split('.')[-1]
+ pure_path = pure_path[:-(len(ext)+1)]
+ file_list.append(pure_path)
+ cnt += 1
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+
+def get_data_loaders(args, whole_audio=False):
+ data_train = AudioDataset(
+ filelists = args.data.training_files,
+ waveform_sec=args.data.duration,
+ hop_size=args.data.block_size,
+ sample_rate=args.data.sampling_rate,
+ load_all_data=args.train.cache_all_data,
+ whole_audio=whole_audio,
+ extensions=args.data.extensions,
+ n_spk=args.model.n_spk,
+ spk=args.spk,
+ device=args.train.cache_device,
+ fp16=args.train.cache_fp16,
+ use_aug=True)
+ loader_train = torch.utils.data.DataLoader(
+ data_train ,
+ batch_size=args.train.batch_size if not whole_audio else 1,
+ shuffle=True,
+ num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
+ persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
+ pin_memory=True if args.train.cache_device=='cpu' else False
+ )
+ data_valid = AudioDataset(
+ filelists = args.data.validation_files,
+ waveform_sec=args.data.duration,
+ hop_size=args.data.block_size,
+ sample_rate=args.data.sampling_rate,
+ load_all_data=args.train.cache_all_data,
+ whole_audio=True,
+ spk=args.spk,
+ extensions=args.data.extensions,
+ n_spk=args.model.n_spk)
+ loader_valid = torch.utils.data.DataLoader(
+ data_valid,
+ batch_size=1,
+ shuffle=False,
+ num_workers=0,
+ pin_memory=True
+ )
+ return loader_train, loader_valid
+
+
+class AudioDataset(Dataset):
+ def __init__(
+ self,
+ filelists,
+ waveform_sec,
+ hop_size,
+ sample_rate,
+ spk,
+ load_all_data=True,
+ whole_audio=False,
+ extensions=['wav'],
+ n_spk=1,
+ device='cpu',
+ fp16=False,
+ use_aug=False,
+ ):
+ super().__init__()
+
+ self.waveform_sec = waveform_sec
+ self.sample_rate = sample_rate
+ self.hop_size = hop_size
+ self.filelists = filelists
+ self.whole_audio = whole_audio
+ self.use_aug = use_aug
+ self.data_buffer={}
+ self.pitch_aug_dict = {}
+ # np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
+ if load_all_data:
+ print('Load all the data filelists:', filelists)
+ else:
+ print('Load the f0, volume data filelists:', filelists)
+ with open(filelists,"r") as f:
+ self.paths = f.read().splitlines()
+ for name_ext in tqdm(self.paths, total=len(self.paths)):
+ name = os.path.splitext(name_ext)[0]
+ path_audio = name_ext
+ duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
+
+ path_f0 = name_ext + ".f0.npy"
+ f0,_ = np.load(path_f0,allow_pickle=True)
+ f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
+
+ path_volume = name_ext + ".vol.npy"
+ volume = np.load(path_volume)
+ volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
+
+ path_augvol = name_ext + ".aug_vol.npy"
+ aug_vol = np.load(path_augvol)
+ aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
+
+ if n_spk is not None and n_spk > 1:
+ spk_name = name_ext.split("/")[-2]
+ spk_id = spk[spk_name] if spk_name in spk else 0
+ if spk_id < 0 or spk_id >= n_spk:
+ raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
+ else:
+ spk_id = 0
+ spk_id = torch.LongTensor(np.array([spk_id])).to(device)
+
+ if load_all_data:
+ '''
+ audio, sr = librosa.load(path_audio, sr=self.sample_rate)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio)
+ audio = torch.from_numpy(audio).to(device)
+ '''
+ path_mel = name_ext + ".mel.npy"
+ mel = np.load(path_mel)
+ mel = torch.from_numpy(mel).to(device)
+
+ path_augmel = name_ext + ".aug_mel.npy"
+ aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
+ aug_mel = np.array(aug_mel,dtype=float)
+ aug_mel = torch.from_numpy(aug_mel).to(device)
+ self.pitch_aug_dict[name_ext] = keyshift
+
+ path_units = name_ext + ".soft.pt"
+ units = torch.load(path_units).to(device)
+ units = units[0]
+ units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
+
+ if fp16:
+ mel = mel.half()
+ aug_mel = aug_mel.half()
+ units = units.half()
+
+ self.data_buffer[name_ext] = {
+ 'duration': duration,
+ 'mel': mel,
+ 'aug_mel': aug_mel,
+ 'units': units,
+ 'f0': f0,
+ 'volume': volume,
+ 'aug_vol': aug_vol,
+ 'spk_id': spk_id
+ }
+ else:
+ path_augmel = name_ext + ".aug_mel.npy"
+ aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
+ self.pitch_aug_dict[name_ext] = keyshift
+ self.data_buffer[name_ext] = {
+ 'duration': duration,
+ 'f0': f0,
+ 'volume': volume,
+ 'aug_vol': aug_vol,
+ 'spk_id': spk_id
+ }
+
+
+ def __getitem__(self, file_idx):
+ name_ext = self.paths[file_idx]
+ data_buffer = self.data_buffer[name_ext]
+ # check duration. if too short, then skip
+ if data_buffer['duration'] < (self.waveform_sec + 0.1):
+ return self.__getitem__( (file_idx + 1) % len(self.paths))
+
+ # get item
+ return self.get_data(name_ext, data_buffer)
+
+ def get_data(self, name_ext, data_buffer):
+ name = os.path.splitext(name_ext)[0]
+ frame_resolution = self.hop_size / self.sample_rate
+ duration = data_buffer['duration']
+ waveform_sec = duration if self.whole_audio else self.waveform_sec
+
+ # load audio
+ idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
+ start_frame = int(idx_from / frame_resolution)
+ units_frame_len = int(waveform_sec / frame_resolution)
+ aug_flag = random.choice([True, False]) and self.use_aug
+ '''
+ audio = data_buffer.get('audio')
+ if audio is None:
+ path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
+ audio, sr = librosa.load(
+ path_audio,
+ sr = self.sample_rate,
+ offset = start_frame * frame_resolution,
+ duration = waveform_sec)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio)
+ # clip audio into N seconds
+ audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
+ audio = torch.from_numpy(audio).float()
+ else:
+ audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
+ '''
+ # load mel
+ mel_key = 'aug_mel' if aug_flag else 'mel'
+ mel = data_buffer.get(mel_key)
+ if mel is None:
+ mel = name_ext + ".mel.npy"
+ mel = np.load(mel)
+ mel = mel[start_frame : start_frame + units_frame_len]
+ mel = torch.from_numpy(mel).float()
+ else:
+ mel = mel[start_frame : start_frame + units_frame_len]
+
+ # load f0
+ f0 = data_buffer.get('f0')
+ aug_shift = 0
+ if aug_flag:
+ aug_shift = self.pitch_aug_dict[name_ext]
+ f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
+
+ # load units
+ units = data_buffer.get('units')
+ if units is None:
+ path_units = name_ext + ".soft.pt"
+ units = torch.load(path_units)
+ units = units[0]
+ units = repeat_expand_2d(units,f0.size(0)).transpose(0,1)
+
+ units = units[start_frame : start_frame + units_frame_len]
+
+ # load volume
+ vol_key = 'aug_vol' if aug_flag else 'volume'
+ volume = data_buffer.get(vol_key)
+ volume_frames = volume[start_frame : start_frame + units_frame_len]
+
+ # load spk_id
+ spk_id = data_buffer.get('spk_id')
+
+ # load shift
+ aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
+
+ return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
+
+ def __len__(self):
+ return len(self.paths)
\ No newline at end of file
diff --git a/diffusion/diffusion.py b/diffusion/diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..decc1d31503e93e6611b02ced7b9c6f00b95db58
--- /dev/null
+++ b/diffusion/diffusion.py
@@ -0,0 +1,317 @@
+from collections import deque
+from functools import partial
+from inspect import isfunction
+import torch.nn.functional as F
+import librosa.sequence
+import numpy as np
+import torch
+from torch import nn
+from tqdm import tqdm
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def extract(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
+
+
+def linear_beta_schedule(timesteps, max_beta=0.02):
+ """
+ linear schedule
+ """
+ betas = np.linspace(1e-4, max_beta, timesteps)
+ return betas
+
+
+def cosine_beta_schedule(timesteps, s=0.008):
+ """
+ cosine schedule
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
+ """
+ steps = timesteps + 1
+ x = np.linspace(0, steps, steps)
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
+ return np.clip(betas, a_min=0, a_max=0.999)
+
+
+beta_schedule = {
+ "cosine": cosine_beta_schedule,
+ "linear": linear_beta_schedule,
+}
+
+
+class GaussianDiffusion(nn.Module):
+ def __init__(self,
+ denoise_fn,
+ out_dims=128,
+ timesteps=1000,
+ k_step=1000,
+ max_beta=0.02,
+ spec_min=-12,
+ spec_max=2):
+ super().__init__()
+ self.denoise_fn = denoise_fn
+ self.out_dims = out_dims
+ betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
+
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.k_step = k_step
+
+ self.noise_list = deque(maxlen=4)
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
+ self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
+
+ def q_mean_variance(self, x_start, t):
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, cond):
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
+
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
+ """
+ Use the PLMS method from
+ [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
+ """
+
+ def get_x_pred(x, noise_t, t):
+ a_t = extract(self.alphas_cumprod, t, x.shape)
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
+
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x + x_delta
+
+ return x_pred
+
+ noise_list = self.noise_list
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+
+ if len(noise_list) == 0:
+ x_pred = get_x_pred(x, noise_pred, t)
+ noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
+ elif len(noise_list) == 1:
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
+ elif len(noise_list) == 2:
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
+ else:
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
+
+ x_prev = get_x_pred(x, noise_pred_prime, t)
+ noise_list.append(noise_pred)
+
+ return x_prev
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
+ )
+
+ def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ x_recon = self.denoise_fn(x_noisy, t, cond)
+
+ if loss_type == 'l1':
+ loss = (noise - x_recon).abs().mean()
+ elif loss_type == 'l2':
+ loss = F.mse_loss(noise, x_recon)
+ else:
+ raise NotImplementedError()
+
+ return loss
+
+ def forward(self,
+ condition,
+ gt_spec=None,
+ infer=True,
+ infer_speedup=10,
+ method='dpm-solver',
+ k_step=300,
+ use_tqdm=True):
+ """
+ conditioning diffusion, use fastspeech2 encoder output as the condition
+ """
+ cond = condition.transpose(1, 2)
+ b, device = condition.shape[0], condition.device
+
+ if not infer:
+ spec = self.norm_spec(gt_spec)
+ t = torch.randint(0, self.k_step, (b,), device=device).long()
+ norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
+ return self.p_losses(norm_spec, t, cond=cond)
+ else:
+ shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
+
+ if gt_spec is None:
+ t = self.k_step
+ x = torch.randn(shape, device=device)
+ else:
+ t = k_step
+ norm_spec = self.norm_spec(gt_spec)
+ norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
+ x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
+
+ if method is not None and infer_speedup > 1:
+ if method == 'dpm-solver':
+ from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
+ # 1. Define the noise schedule.
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
+
+ # 2. Convert your discrete-time `model` to the continuous-time
+ # noise prediction model. Here is an example for a diffusion model
+ # `model` with the noise prediction type ("noise") .
+ def my_wrapper(fn):
+ def wrapped(x, t, **kwargs):
+ ret = fn(x, t, **kwargs)
+ if use_tqdm:
+ self.bar.update(1)
+ return ret
+
+ return wrapped
+
+ model_fn = model_wrapper(
+ my_wrapper(self.denoise_fn),
+ noise_schedule,
+ model_type="noise", # or "x_start" or "v" or "score"
+ model_kwargs={"cond": cond}
+ )
+
+ # 3. Define dpm-solver and sample by singlestep DPM-Solver.
+ # (We recommend singlestep DPM-Solver for unconditional sampling)
+ # You can adjust the `steps` to balance the computation
+ # costs and the sample quality.
+ dpm_solver = DPM_Solver(model_fn, noise_schedule)
+
+ steps = t // infer_speedup
+ if use_tqdm:
+ self.bar = tqdm(desc="sample time step", total=steps)
+ x = dpm_solver.sample(
+ x,
+ steps=steps,
+ order=3,
+ skip_type="time_uniform",
+ method="singlestep",
+ )
+ if use_tqdm:
+ self.bar.close()
+ elif method == 'pndm':
+ self.noise_list = deque(maxlen=4)
+ if use_tqdm:
+ for i in tqdm(
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
+ total=t // infer_speedup,
+ ):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ for i in reversed(range(0, t, infer_speedup)):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ raise NotImplementedError(method)
+ else:
+ if use_tqdm:
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ else:
+ for i in reversed(range(0, t)):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ x = x.squeeze(1).transpose(1, 2) # [B, T, M]
+ return self.denorm_spec(x)
+
+ def norm_spec(self, x):
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
+
+ def denorm_spec(self, x):
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
diff --git a/diffusion/diffusion_onnx.py b/diffusion/diffusion_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c1e80321de162b5233801efa3423739f7f92bdc
--- /dev/null
+++ b/diffusion/diffusion_onnx.py
@@ -0,0 +1,612 @@
+from collections import deque
+from functools import partial
+from inspect import isfunction
+import torch.nn.functional as F
+import librosa.sequence
+import numpy as np
+from torch.nn import Conv1d
+from torch.nn import Mish
+import torch
+from torch import nn
+from tqdm import tqdm
+import math
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def extract(a, t):
+ return a[t].reshape((1, 1, 1, 1))
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
+
+
+def linear_beta_schedule(timesteps, max_beta=0.02):
+ """
+ linear schedule
+ """
+ betas = np.linspace(1e-4, max_beta, timesteps)
+ return betas
+
+
+def cosine_beta_schedule(timesteps, s=0.008):
+ """
+ cosine schedule
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
+ """
+ steps = timesteps + 1
+ x = np.linspace(0, steps, steps)
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
+ return np.clip(betas, a_min=0, a_max=0.999)
+
+
+beta_schedule = {
+ "cosine": cosine_beta_schedule,
+ "linear": linear_beta_schedule,
+}
+
+
+def extract_1(a, t):
+ return a[t].reshape((1, 1, 1, 1))
+
+
+def predict_stage0(noise_pred, noise_pred_prev):
+ return (noise_pred + noise_pred_prev) / 2
+
+
+def predict_stage1(noise_pred, noise_list):
+ return (noise_pred * 3
+ - noise_list[-1]) / 2
+
+
+def predict_stage2(noise_pred, noise_list):
+ return (noise_pred * 23
+ - noise_list[-1] * 16
+ + noise_list[-2] * 5) / 12
+
+
+def predict_stage3(noise_pred, noise_list):
+ return (noise_pred * 55
+ - noise_list[-1] * 59
+ + noise_list[-2] * 37
+ - noise_list[-3] * 9) / 24
+
+
+class SinusoidalPosEmb(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+ self.half_dim = dim // 2
+ self.emb = 9.21034037 / (self.half_dim - 1)
+ self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
+ self.emb = self.emb.cpu()
+
+ def forward(self, x):
+ emb = self.emb * x
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+class ResidualBlock(nn.Module):
+ def __init__(self, encoder_hidden, residual_channels, dilation):
+ super().__init__()
+ self.residual_channels = residual_channels
+ self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
+ self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
+ self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
+ self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
+
+ def forward(self, x, conditioner, diffusion_step):
+ diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
+ conditioner = self.conditioner_projection(conditioner)
+ y = x + diffusion_step
+ y = self.dilated_conv(y) + conditioner
+
+ gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+
+ y = torch.sigmoid(gate) * torch.tanh(filter_1)
+ y = self.output_projection(y)
+
+ residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+
+ return (x + residual) / 1.41421356, skip
+
+
+class DiffNet(nn.Module):
+ def __init__(self, in_dims, n_layers, n_chans, n_hidden):
+ super().__init__()
+ self.encoder_hidden = n_hidden
+ self.residual_layers = n_layers
+ self.residual_channels = n_chans
+ self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
+ self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
+ dim = self.residual_channels
+ self.mlp = nn.Sequential(
+ nn.Linear(dim, dim * 4),
+ Mish(),
+ nn.Linear(dim * 4, dim)
+ )
+ self.residual_layers = nn.ModuleList([
+ ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
+ for i in range(self.residual_layers)
+ ])
+ self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
+ self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
+ nn.init.zeros_(self.output_projection.weight)
+
+ def forward(self, spec, diffusion_step, cond):
+ x = spec.squeeze(0)
+ x = self.input_projection(x) # x [B, residual_channel, T]
+ x = F.relu(x)
+ # skip = torch.randn_like(x)
+ diffusion_step = diffusion_step.float()
+ diffusion_step = self.diffusion_embedding(diffusion_step)
+ diffusion_step = self.mlp(diffusion_step)
+
+ x, skip = self.residual_layers[0](x, cond, diffusion_step)
+ # noinspection PyTypeChecker
+ for layer in self.residual_layers[1:]:
+ x, skip_connection = layer.forward(x, cond, diffusion_step)
+ skip = skip + skip_connection
+ x = skip / math.sqrt(len(self.residual_layers))
+ x = self.skip_projection(x)
+ x = F.relu(x)
+ x = self.output_projection(x) # [B, 80, T]
+ return x.unsqueeze(1)
+
+
+class AfterDiffusion(nn.Module):
+ def __init__(self, spec_max, spec_min, v_type='a'):
+ super().__init__()
+ self.spec_max = spec_max
+ self.spec_min = spec_min
+ self.type = v_type
+
+ def forward(self, x):
+ x = x.squeeze(1).permute(0, 2, 1)
+ mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
+ if self.type == 'nsf-hifigan-log10':
+ mel_out = mel_out * 0.434294
+ return mel_out.transpose(2, 1)
+
+
+class Pred(nn.Module):
+ def __init__(self, alphas_cumprod):
+ super().__init__()
+ self.alphas_cumprod = alphas_cumprod
+
+ def forward(self, x_1, noise_t, t_1, t_prev):
+ a_t = extract(self.alphas_cumprod, t_1).cpu()
+ a_prev = extract(self.alphas_cumprod, t_prev).cpu()
+ a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x_1 + x_delta.cpu()
+
+ return x_pred
+
+
+class GaussianDiffusion(nn.Module):
+ def __init__(self,
+ out_dims=128,
+ n_layers=20,
+ n_chans=384,
+ n_hidden=256,
+ timesteps=1000,
+ k_step=1000,
+ max_beta=0.02,
+ spec_min=-12,
+ spec_max=2):
+ super().__init__()
+ self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
+ self.out_dims = out_dims
+ self.mel_bins = out_dims
+ self.n_hidden = n_hidden
+ betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
+
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.k_step = k_step
+
+ self.noise_list = deque(maxlen=4)
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
+ self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
+ self.ad = AfterDiffusion(self.spec_max, self.spec_min)
+ self.xp = Pred(self.alphas_cumprod)
+
+ def q_mean_variance(self, x_start, t):
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, cond):
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
+
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
+ """
+ Use the PLMS method from
+ [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
+ """
+
+ def get_x_pred(x, noise_t, t):
+ a_t = extract(self.alphas_cumprod, t)
+ a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
+
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x + x_delta
+
+ return x_pred
+
+ noise_list = self.noise_list
+ noise_pred = self.denoise_fn(x, t, cond=cond)
+
+ if len(noise_list) == 0:
+ x_pred = get_x_pred(x, noise_pred, t)
+ noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
+ elif len(noise_list) == 1:
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
+ elif len(noise_list) == 2:
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
+ else:
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
+
+ x_prev = get_x_pred(x, noise_pred_prime, t)
+ noise_list.append(noise_pred)
+
+ return x_prev
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
+ )
+
+ def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ x_recon = self.denoise_fn(x_noisy, t, cond)
+
+ if loss_type == 'l1':
+ loss = (noise - x_recon).abs().mean()
+ elif loss_type == 'l2':
+ loss = F.mse_loss(noise, x_recon)
+ else:
+ raise NotImplementedError()
+
+ return loss
+
+ def org_forward(self,
+ condition,
+ init_noise=None,
+ gt_spec=None,
+ infer=True,
+ infer_speedup=100,
+ method='pndm',
+ k_step=1000,
+ use_tqdm=True):
+ """
+ conditioning diffusion, use fastspeech2 encoder output as the condition
+ """
+ cond = condition
+ b, device = condition.shape[0], condition.device
+ if not infer:
+ spec = self.norm_spec(gt_spec)
+ t = torch.randint(0, self.k_step, (b,), device=device).long()
+ norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
+ return self.p_losses(norm_spec, t, cond=cond)
+ else:
+ shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
+
+ if gt_spec is None:
+ t = self.k_step
+ if init_noise is None:
+ x = torch.randn(shape, device=device)
+ else:
+ x = init_noise
+ else:
+ t = k_step
+ norm_spec = self.norm_spec(gt_spec)
+ norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
+ x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
+
+ if method is not None and infer_speedup > 1:
+ if method == 'dpm-solver':
+ from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
+ # 1. Define the noise schedule.
+ noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
+
+ # 2. Convert your discrete-time `model` to the continuous-time
+ # noise prediction model. Here is an example for a diffusion model
+ # `model` with the noise prediction type ("noise") .
+ def my_wrapper(fn):
+ def wrapped(x, t, **kwargs):
+ ret = fn(x, t, **kwargs)
+ if use_tqdm:
+ self.bar.update(1)
+ return ret
+
+ return wrapped
+
+ model_fn = model_wrapper(
+ my_wrapper(self.denoise_fn),
+ noise_schedule,
+ model_type="noise", # or "x_start" or "v" or "score"
+ model_kwargs={"cond": cond}
+ )
+
+ # 3. Define dpm-solver and sample by singlestep DPM-Solver.
+ # (We recommend singlestep DPM-Solver for unconditional sampling)
+ # You can adjust the `steps` to balance the computation
+ # costs and the sample quality.
+ dpm_solver = DPM_Solver(model_fn, noise_schedule)
+
+ steps = t // infer_speedup
+ if use_tqdm:
+ self.bar = tqdm(desc="sample time step", total=steps)
+ x = dpm_solver.sample(
+ x,
+ steps=steps,
+ order=3,
+ skip_type="time_uniform",
+ method="singlestep",
+ )
+ if use_tqdm:
+ self.bar.close()
+ elif method == 'pndm':
+ self.noise_list = deque(maxlen=4)
+ if use_tqdm:
+ for i in tqdm(
+ reversed(range(0, t, infer_speedup)), desc='sample time step',
+ total=t // infer_speedup,
+ ):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ for i in reversed(range(0, t, infer_speedup)):
+ x = self.p_sample_plms(
+ x, torch.full((b,), i, device=device, dtype=torch.long),
+ infer_speedup, cond=cond
+ )
+ else:
+ raise NotImplementedError(method)
+ else:
+ if use_tqdm:
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ else:
+ for i in reversed(range(0, t)):
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
+ x = x.squeeze(1).transpose(1, 2) # [B, T, M]
+ return self.denorm_spec(x).transpose(2, 1)
+
+ def norm_spec(self, x):
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
+
+ def denorm_spec(self, x):
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
+
+ def get_x_pred(self, x_1, noise_t, t_1, t_prev):
+ a_t = extract(self.alphas_cumprod, t_1)
+ a_prev = extract(self.alphas_cumprod, t_prev)
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
+ a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
+ x_pred = x_1 + x_delta
+ return x_pred
+
+ def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
+ cond = torch.randn([1, self.n_hidden, 10]).cpu()
+ if init_noise is None:
+ x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
+ else:
+ x = init_noise
+ pndms = 100
+
+ org_y_x = self.org_forward(cond, init_noise=x)
+
+ device = cond.device
+ n_frames = cond.shape[2]
+ step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
+ plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
+ noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
+
+ ot = step_range[0]
+ ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
+ if export_denoise:
+ torch.onnx.export(
+ self.denoise_fn,
+ (x.cpu(), ot_1.cpu(), cond.cpu()),
+ f"{project_name}_denoise.onnx",
+ input_names=["noise", "time", "condition"],
+ output_names=["noise_pred"],
+ dynamic_axes={
+ "noise": [3],
+ "condition": [2]
+ },
+ opset_version=16
+ )
+
+ for t in step_range:
+ t_1 = torch.full((1,), t, device=device, dtype=torch.long)
+ noise_pred = self.denoise_fn(x, t_1, cond)
+ t_prev = t_1 - pndms
+ t_prev = t_prev * (t_prev > 0)
+ if plms_noise_stage == 0:
+ if export_pred:
+ torch.onnx.export(
+ self.xp,
+ (x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
+ f"{project_name}_pred.onnx",
+ input_names=["noise", "noise_pred", "time", "time_prev"],
+ output_names=["noise_pred_o"],
+ dynamic_axes={
+ "noise": [3],
+ "noise_pred": [3]
+ },
+ opset_version=16
+ )
+
+ x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
+ noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
+ noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
+
+ elif plms_noise_stage == 1:
+ noise_pred_prime = predict_stage1(noise_pred, noise_list)
+
+ elif plms_noise_stage == 2:
+ noise_pred_prime = predict_stage2(noise_pred, noise_list)
+
+ else:
+ noise_pred_prime = predict_stage3(noise_pred, noise_list)
+
+ noise_pred = noise_pred.unsqueeze(0)
+
+ if plms_noise_stage < 3:
+ noise_list = torch.cat((noise_list, noise_pred), dim=0)
+ plms_noise_stage = plms_noise_stage + 1
+
+ else:
+ noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
+
+ x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
+ if export_after:
+ torch.onnx.export(
+ self.ad,
+ x.cpu(),
+ f"{project_name}_after.onnx",
+ input_names=["x"],
+ output_names=["mel_out"],
+ dynamic_axes={
+ "x": [3]
+ },
+ opset_version=16
+ )
+ x = self.ad(x)
+
+ print((x == org_y_x).all())
+ return x
+
+ def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
+ cond = condition
+ x = init_noise
+
+ device = cond.device
+ n_frames = cond.shape[2]
+ step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
+ plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
+ noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
+
+ ot = step_range[0]
+ ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
+
+ for t in step_range:
+ t_1 = torch.full((1,), t, device=device, dtype=torch.long)
+ noise_pred = self.denoise_fn(x, t_1, cond)
+ t_prev = t_1 - pndms
+ t_prev = t_prev * (t_prev > 0)
+ if plms_noise_stage == 0:
+ x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
+ noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
+ noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
+
+ elif plms_noise_stage == 1:
+ noise_pred_prime = predict_stage1(noise_pred, noise_list)
+
+ elif plms_noise_stage == 2:
+ noise_pred_prime = predict_stage2(noise_pred, noise_list)
+
+ else:
+ noise_pred_prime = predict_stage3(noise_pred, noise_list)
+
+ noise_pred = noise_pred.unsqueeze(0)
+
+ if plms_noise_stage < 3:
+ noise_list = torch.cat((noise_list, noise_pred), dim=0)
+ plms_noise_stage = plms_noise_stage + 1
+
+ else:
+ noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
+
+ x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
+ x = self.ad(x)
+ return x
diff --git a/diffusion/dpm_solver_pytorch.py b/diffusion/dpm_solver_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..dee5e280661b61e0a99038ce0bd240db51344ead
--- /dev/null
+++ b/diffusion/dpm_solver_pytorch.py
@@ -0,0 +1,1201 @@
+import math
+
+import torch
+
+
+class NoiseScheduleVP:
+ def __init__(
+ self,
+ schedule='discrete',
+ betas=None,
+ alphas_cumprod=None,
+ continuous_beta_0=0.1,
+ continuous_beta_1=20.,
+ ):
+ """Create a wrapper class for the forward SDE (VP type).
+
+ ***
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+ ***
+
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+
+ log_alpha_t = self.marginal_log_mean_coeff(t)
+ sigma_t = self.marginal_std(t)
+ lambda_t = self.marginal_lambda(t)
+
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+
+ t = self.inverse_lambda(lambda_t)
+
+ ===============================================================
+
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+
+ 1. For discrete-time DPMs:
+
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+ t_i = (i + 1) / N
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+
+ Args:
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
+ and
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+
+
+ 2. For continuous-time DPMs:
+
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
+ schedule are the default settings in DDPM and improved-DDPM:
+
+ Args:
+ beta_min: A `float` number. The smallest beta for the linear schedule.
+ beta_max: A `float` number. The largest beta for the linear schedule.
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
+ T: A `float` number. The ending time of the forward process.
+
+ ===============================================================
+
+ Args:
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+ 'linear' or 'cosine' for continuous-time DPMs.
+ Returns:
+ A wrapper object of the forward SDE (VP type).
+
+ ===============================================================
+
+ Example:
+
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
+
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+
+ # For continuous-time DPMs (VPSDE), linear schedule:
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+
+ """
+
+ if schedule not in ['discrete', 'linear', 'cosine']:
+ raise ValueError(
+ "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
+ schedule))
+
+ self.schedule = schedule
+ if schedule == 'discrete':
+ if betas is not None:
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+ else:
+ assert alphas_cumprod is not None
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
+ self.total_N = len(log_alphas)
+ self.T = 1.
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
+ else:
+ self.total_N = 1000
+ self.beta_0 = continuous_beta_0
+ self.beta_1 = continuous_beta_1
+ self.cosine_s = 0.008
+ self.cosine_beta_max = 999.
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
+ 1. + self.cosine_s) / math.pi - self.cosine_s
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
+ self.schedule = schedule
+ if schedule == 'cosine':
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
+ self.T = 0.9946
+ else:
+ self.T = 1.
+
+ def marginal_log_mean_coeff(self, t):
+ """
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
+ """
+ if self.schedule == 'discrete':
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
+ self.log_alpha_array.to(t.device)).reshape((-1))
+ elif self.schedule == 'linear':
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+ elif self.schedule == 'cosine':
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
+ return log_alpha_t
+
+ def marginal_alpha(self, t):
+ """
+ Compute alpha_t of a given continuous-time label t in [0, T].
+ """
+ return torch.exp(self.marginal_log_mean_coeff(t))
+
+ def marginal_std(self, t):
+ """
+ Compute sigma_t of a given continuous-time label t in [0, T].
+ """
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+ def marginal_lambda(self, t):
+ """
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+ """
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+ return log_mean_coeff - log_std
+
+ def inverse_lambda(self, lamb):
+ """
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+ """
+ if self.schedule == 'linear':
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ Delta = self.beta_0 ** 2 + tmp
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+ elif self.schedule == 'discrete':
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
+ torch.flip(self.t_array.to(lamb.device), [1]))
+ return t.reshape((-1,))
+ else:
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
+ 1. + self.cosine_s) / math.pi - self.cosine_s
+ t = t_fn(log_alpha)
+ return t
+
+
+def model_wrapper(
+ model,
+ noise_schedule,
+ model_type="noise",
+ model_kwargs={},
+ guidance_type="uncond",
+ condition=None,
+ unconditional_condition=None,
+ guidance_scale=1.,
+ classifier_fn=None,
+ classifier_kwargs={},
+):
+ """Create a wrapper function for the noise prediction model.
+
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
+
+ We support four types of the diffusion model by setting `model_type`:
+
+ 1. "noise": noise prediction model. (Trained by predicting noise).
+
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
+
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
+
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
+ arXiv preprint arXiv:2202.00512 (2022).
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
+ arXiv preprint arXiv:2210.02303 (2022).
+
+ 4. "score": marginal score function. (Trained by denoising score matching).
+ Note that the score function and the noise prediction model follows a simple relationship:
+ ```
+ noise(x_t, t) = -sigma_t * score(x_t, t)
+ ```
+
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
+ 1. "uncond": unconditional sampling by DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ The input `classifier_fn` has the following format:
+ ``
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
+ ``
+
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
+
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
+ ``
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
+
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
+ arXiv preprint arXiv:2207.12598 (2022).
+
+
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
+ or continuous-time labels (i.e. epsilon to T).
+
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
+ ``
+ def model_fn(x, t_continuous) -> noise:
+ t_input = get_model_input_time(t_continuous)
+ return noise_pred(model, x, t_input, **model_kwargs)
+ ``
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
+
+ ===============================================================
+
+ Args:
+ model: A diffusion model with the corresponding format described above.
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ model_type: A `str`. The parameterization type of the diffusion model.
+ "noise" or "x_start" or "v" or "score".
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
+ guidance_type: A `str`. The type of the guidance for sampling.
+ "uncond" or "classifier" or "classifier-free".
+ condition: A pytorch tensor. The condition for the guided sampling.
+ Only used for "classifier" or "classifier-free" guidance type.
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
+ Only used for "classifier-free" guidance type.
+ guidance_scale: A `float`. The scale for the guided sampling.
+ classifier_fn: A classifier function. Only used for the classifier guidance.
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
+ Returns:
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
+ """
+
+ def get_model_input_time(t_continuous):
+ """
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+ For continuous-time DPMs, we just use `t_continuous`.
+ """
+ if noise_schedule.schedule == 'discrete':
+ return (t_continuous - 1. / noise_schedule.total_N) * noise_schedule.total_N
+ else:
+ return t_continuous
+
+ def noise_pred_fn(x, t_continuous, cond=None):
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ t_input = get_model_input_time(t_continuous)
+ if cond is None:
+ output = model(x, t_input, **model_kwargs)
+ else:
+ output = model(x, t_input, cond, **model_kwargs)
+ if model_type == "noise":
+ return output
+ elif model_type == "x_start":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
+ elif model_type == "v":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
+ elif model_type == "score":
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return -expand_dims(sigma_t, dims) * output
+
+ def cond_grad_fn(x, t_input):
+ """
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+ """
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+ def model_fn(x, t_continuous):
+ """
+ The noise predicition model function that is used for DPM-Solver.
+ """
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ if guidance_type == "uncond":
+ return noise_pred_fn(x, t_continuous)
+ elif guidance_type == "classifier":
+ assert classifier_fn is not None
+ t_input = get_model_input_time(t_continuous)
+ cond_grad = cond_grad_fn(x, t_input)
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ noise = noise_pred_fn(x, t_continuous)
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
+ elif guidance_type == "classifier-free":
+ if guidance_scale == 1. or unconditional_condition is None:
+ return noise_pred_fn(x, t_continuous, cond=condition)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t_continuous] * 2)
+ c_in = torch.cat([unconditional_condition, condition])
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+ assert model_type in ["noise", "x_start", "v"]
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
+ return model_fn
+
+
+class DPM_Solver:
+ def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
+ """Construct a DPM-Solver.
+
+ We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
+ If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
+ If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
+ In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
+ The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
+
+ Args:
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
+ ``
+ def model_fn(x, t_continuous):
+ return noise
+ ``
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
+ thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
+ max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
+
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
+ """
+ self.model = model_fn
+ self.noise_schedule = noise_schedule
+ self.predict_x0 = predict_x0
+ self.thresholding = thresholding
+ self.max_val = max_val
+
+ def noise_prediction_fn(self, x, t):
+ """
+ Return the noise prediction model.
+ """
+ return self.model(x, t)
+
+ def data_prediction_fn(self, x, t):
+ """
+ Return the data prediction model (with thresholding).
+ """
+ noise = self.noise_prediction_fn(x, t)
+ dims = x.dim()
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
+ if self.thresholding:
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def model_fn(self, x, t):
+ """
+ Convert the model to the noise prediction model or the data prediction model.
+ """
+ if self.predict_x0:
+ return self.data_prediction_fn(x, t)
+ else:
+ return self.noise_prediction_fn(x, t)
+
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
+ """Compute the intermediate time steps for sampling.
+
+ Args:
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+ - 'logSNR': uniform logSNR for the time steps.
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ N: A `int`. The total number of the spacing of the time steps.
+ device: A torch device.
+ Returns:
+ A pytorch tensor of the time steps, with the shape (N + 1,).
+ """
+ if skip_type == 'logSNR':
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
+ elif skip_type == 'time_uniform':
+ return torch.linspace(t_T, t_0, N + 1).to(device)
+ elif skip_type == 'time_quadratic':
+ t_order = 2
+ t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
+ return t
+ else:
+ raise ValueError(
+ "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+ """
+ Get the order of each step for sampling by the singlestep DPM-Solver.
+
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
+ - If order == 1:
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
+ - If order == 2:
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If order == 3:
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
+
+ ============================================
+ Args:
+ order: A `int`. The max order for the solver (2 or 3).
+ steps: A `int`. The total number of function evaluations (NFE).
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+ - 'logSNR': uniform logSNR for the time steps.
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ device: A torch device.
+ Returns:
+ orders: A list of the solver order of each step.
+ """
+ if order == 3:
+ K = steps // 3 + 1
+ if steps % 3 == 0:
+ orders = [3, ] * (K - 2) + [2, 1]
+ elif steps % 3 == 1:
+ orders = [3, ] * (K - 1) + [1]
+ else:
+ orders = [3, ] * (K - 1) + [2]
+ elif order == 2:
+ if steps % 2 == 0:
+ K = steps // 2
+ orders = [2, ] * K
+ else:
+ K = steps // 2 + 1
+ orders = [2, ] * (K - 1) + [1]
+ elif order == 1:
+ K = 1
+ orders = [1, ] * steps
+ else:
+ raise ValueError("'order' must be '1' or '2' or '3'.")
+ if skip_type == 'logSNR':
+ # To reproduce the results in DPM-Solver paper
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+ else:
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
+ torch.cumsum(torch.tensor([0, ] + orders), dim=0).to(device)]
+ return timesteps_outer, orders
+
+ def denoise_fn(self, x, s):
+ """
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+ """
+ return self.data_prediction_fn(x, s)
+
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
+ """
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ ns = self.noise_schedule
+ dims = x.dim()
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ if self.predict_x0:
+ phi_1 = torch.expm1(-h)
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s}
+ else:
+ return x_t
+ else:
+ phi_1 = torch.expm1(h)
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s}
+ else:
+ return x_t
+
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
+ solver_type='dpm_solver'):
+ """
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ r1: A `float`. The hyperparameter of the second-order solver.
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpm_solver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+ if r1 is None:
+ r1 = 0.5
+ ns = self.noise_schedule
+ dims = x.dim()
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ lambda_s1 = lambda_s + r1 * h
+ s1 = ns.inverse_lambda(lambda_s1)
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
+ s1), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
+
+ if self.predict_x0:
+ phi_11 = torch.expm1(-r1 * h)
+ phi_1 = torch.expm1(-h)
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_s1 = (
+ expand_dims(sigma_s1 / sigma_s, dims) * x
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
+ model_s1 - model_s)
+ )
+ else:
+ phi_11 = torch.expm1(r1 * h)
+ phi_1 = torch.expm1(h)
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ x_s1 = (
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
+ )
+ if return_intermediate:
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
+ else:
+ return x_t
+
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
+ return_intermediate=False, solver_type='dpm_solver'):
+ """
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ r1: A `float`. The hyperparameter of the third-order solver.
+ r2: A `float`. The hyperparameter of the third-order solver.
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpm_solver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+ if r1 is None:
+ r1 = 1. / 3.
+ if r2 is None:
+ r2 = 2. / 3.
+ ns = self.noise_schedule
+ dims = x.dim()
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+ h = lambda_t - lambda_s
+ lambda_s1 = lambda_s + r1 * h
+ lambda_s2 = lambda_s + r2 * h
+ s1 = ns.inverse_lambda(lambda_s1)
+ s2 = ns.inverse_lambda(lambda_s2)
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
+ s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
+ s2), ns.marginal_std(t)
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
+
+ if self.predict_x0:
+ phi_11 = torch.expm1(-r1 * h)
+ phi_12 = torch.expm1(-r2 * h)
+ phi_1 = torch.expm1(-h)
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
+ phi_2 = phi_1 / h + 1.
+ phi_3 = phi_2 / h - 0.5
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ if model_s1 is None:
+ x_s1 = (
+ expand_dims(sigma_s1 / sigma_s, dims) * x
+ - expand_dims(alpha_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ x_s2 = (
+ expand_dims(sigma_s2 / sigma_s, dims) * x
+ - expand_dims(alpha_s2 * phi_12, dims) * model_s
+ + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
+ )
+ model_s2 = self.model_fn(x_s2, s2)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
+ )
+ elif solver_type == 'taylor':
+ D1_0 = (1. / r1) * (model_s1 - model_s)
+ D1_1 = (1. / r2) * (model_s2 - model_s)
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+ x_t = (
+ expand_dims(sigma_t / sigma_s, dims) * x
+ - expand_dims(alpha_t * phi_1, dims) * model_s
+ + expand_dims(alpha_t * phi_2, dims) * D1
+ - expand_dims(alpha_t * phi_3, dims) * D2
+ )
+ else:
+ phi_11 = torch.expm1(r1 * h)
+ phi_12 = torch.expm1(r2 * h)
+ phi_1 = torch.expm1(h)
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
+ phi_2 = phi_1 / h - 1.
+ phi_3 = phi_2 / h - 0.5
+
+ if model_s is None:
+ model_s = self.model_fn(x, s)
+ if model_s1 is None:
+ x_s1 = (
+ expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
+ - expand_dims(sigma_s1 * phi_11, dims) * model_s
+ )
+ model_s1 = self.model_fn(x_s1, s1)
+ x_s2 = (
+ expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
+ - expand_dims(sigma_s2 * phi_12, dims) * model_s
+ - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
+ )
+ model_s2 = self.model_fn(x_s2, s2)
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
+ )
+ elif solver_type == 'taylor':
+ D1_0 = (1. / r1) * (model_s1 - model_s)
+ D1_1 = (1. / r2) * (model_s2 - model_s)
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+ - expand_dims(sigma_t * phi_1, dims) * model_s
+ - expand_dims(sigma_t * phi_2, dims) * D1
+ - expand_dims(sigma_t * phi_3, dims) * D2
+ )
+
+ if return_intermediate:
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
+ else:
+ return x_t
+
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
+ """
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if solver_type not in ['dpm_solver', 'taylor']:
+ raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+ ns = self.noise_schedule
+ dims = x.dim()
+ model_prev_1, model_prev_0 = model_prev_list
+ t_prev_1, t_prev_0 = t_prev_list
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
+ t_prev_0), ns.marginal_lambda(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h_0 = lambda_prev_0 - lambda_prev_1
+ h = lambda_t - lambda_prev_0
+ r0 = h_0 / h
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
+ if self.predict_x0:
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+ - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
+ )
+ else:
+ if solver_type == 'dpm_solver':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+ - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
+ )
+ elif solver_type == 'taylor':
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
+ )
+ return x_t
+
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
+ """
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ ns = self.noise_schedule
+ dims = x.dim()
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
+ t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h_1 = lambda_prev_1 - lambda_prev_2
+ h_0 = lambda_prev_0 - lambda_prev_1
+ h = lambda_t - lambda_prev_0
+ r0, r1 = h_0 / h, h_1 / h
+ D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
+ D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
+ D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
+ D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
+ if self.predict_x0:
+ x_t = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+ + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
+ - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
+ )
+ else:
+ x_t = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+ - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
+ - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
+ )
+ return x_t
+
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
+ r2=None):
+ """
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
+ r2: A `float`. The hyperparameter of the third-order solver.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if order == 1:
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
+ elif order == 2:
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
+ solver_type=solver_type, r1=r1)
+ elif order == 3:
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
+ solver_type=solver_type, r1=r1, r2=r2)
+ else:
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
+ """
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `s`.
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+ t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_t: A pytorch tensor. The approximated solution at time `t`.
+ """
+ if order == 1:
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
+ elif order == 2:
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+ elif order == 3:
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+ else:
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
+ solver_type='dpm_solver'):
+ """
+ The adaptive step size solver based on singlestep DPM-Solver.
+
+ Args:
+ x: A pytorch tensor. The initial value at time `t_T`.
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
+ t_T: A `float`. The starting time of the sampling (default is T).
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
+ h_init: A `float`. The initial step size (for logSNR).
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
+ solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+ The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+ Returns:
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
+
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
+ """
+ ns = self.noise_schedule
+ s = t_T * torch.ones((x.shape[0],)).to(x)
+ lambda_s = ns.marginal_lambda(s)
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
+ h = h_init * torch.ones_like(s).to(x)
+ x_prev = x
+ nfe = 0
+ if order == 2:
+ r1 = 0.5
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
+ solver_type=solver_type,
+ **kwargs)
+ elif order == 3:
+ r1, r2 = 1. / 3., 2. / 3.
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
+ return_intermediate=True,
+ solver_type=solver_type)
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
+ solver_type=solver_type,
+ **kwargs)
+ else:
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
+ while torch.abs((s - t_0)).mean() > t_err:
+ t = ns.inverse_lambda(lambda_s + h)
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
+ E = norm_fn((x_higher - x_lower) / delta).max()
+ if torch.all(E <= 1.):
+ x = x_higher
+ s = t
+ x_prev = x_lower
+ lambda_s = ns.marginal_lambda(s)
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
+ nfe += order
+ print('adaptive solver nfe', nfe)
+ return x
+
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
+ method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
+ rtol=0.05,
+ ):
+ """
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
+
+ =====================================================
+
+ We support the following algorithms for both noise prediction model and data prediction model:
+ - 'singlestep':
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
+ The total number of function evaluations (NFE) == `steps`.
+ Given a fixed NFE == `steps`, the sampling procedure is:
+ - If `order` == 1:
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
+ - If `order` == 2:
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If `order` == 3:
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
+ - 'multistep':
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
+ We initialize the first `order` values by lower order multistep solvers.
+ Given a fixed NFE == `steps`, the sampling procedure is:
+ Denote K = steps.
+ - If `order` == 1:
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
+ - If `order` == 2:
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
+ - If `order` == 3:
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
+ - 'singlestep_fixed':
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
+ - 'adaptive':
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
+ (NFE) and the sample quality.
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
+
+ =====================================================
+
+ Some advices for choosing the algorithm:
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
+ Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
+ e.g.
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
+ skip_type='time_uniform', method='singlestep')
+ - For **guided sampling with large guidance scale** by DPMs:
+ Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
+ e.g.
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
+ skip_type='time_uniform', method='multistep')
+
+ We support three types of `skip_type`:
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
+ - 'time_quadratic': quadratic time for the time steps.
+
+ =====================================================
+ Args:
+ x: A pytorch tensor. The initial value at time `t_start`
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
+ steps: A `int`. The total number of function evaluations (NFE).
+ t_start: A `float`. The starting time of the sampling.
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
+ t_end: A `float`. The ending time of the sampling.
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
+ For discrete-time DPMs:
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
+ For continuous-time DPMs:
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
+ order: A `int`. The order of DPM-Solver.
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
+ denoise: A `bool`. Whether to denoise at the final step. Default is False.
+ If `denoise` is True, the total NFE is (`steps` + 1).
+ solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+ Returns:
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
+
+ """
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+ t_T = self.noise_schedule.T if t_start is None else t_start
+ device = x.device
+ if method == 'adaptive':
+ with torch.no_grad():
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
+ solver_type=solver_type)
+ elif method == 'multistep':
+ assert steps >= order
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ assert timesteps.shape[0] - 1 == steps
+ with torch.no_grad():
+ vec_t = timesteps[0].expand((x.shape[0]))
+ model_prev_list = [self.model_fn(x, vec_t)]
+ t_prev_list = [vec_t]
+ # Init the first `order` values by lower order multistep DPM-Solver.
+ for init_order in range(1, order):
+ vec_t = timesteps[init_order].expand(x.shape[0])
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
+ solver_type=solver_type)
+ model_prev_list.append(self.model_fn(x, vec_t))
+ t_prev_list.append(vec_t)
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
+ for step in range(order, steps + 1):
+ vec_t = timesteps[step].expand(x.shape[0])
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, order,
+ solver_type=solver_type)
+ for i in range(order - 1):
+ t_prev_list[i] = t_prev_list[i + 1]
+ model_prev_list[i] = model_prev_list[i + 1]
+ t_prev_list[-1] = vec_t
+ # We do not need to evaluate the final model value.
+ if step < steps:
+ model_prev_list[-1] = self.model_fn(x, vec_t)
+ elif method in ['singlestep', 'singlestep_fixed']:
+ if method == 'singlestep':
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
+ skip_type=skip_type,
+ t_T=t_T, t_0=t_0,
+ device=device)
+ elif method == 'singlestep_fixed':
+ K = steps // order
+ orders = [order, ] * K
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
+ for i, order in enumerate(orders):
+ t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
+ N=order, device=device)
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
+ vec_s, vec_t = t_T_inner.repeat(x.shape[0]), t_0_inner.repeat(x.shape[0])
+ h = lambda_inner[-1] - lambda_inner[0]
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
+ x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
+ if denoise:
+ x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
+ return x
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+ """
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+
+ Args:
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+ yp: PyTorch tensor with shape [C, K].
+ Returns:
+ The function values f(x), with shape [N, C].
+ """
+ N, K = x.shape[0], xp.shape[1]
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+ x_idx = torch.argmin(x_indices, dim=2)
+ cand_start_idx = x_idx - 1
+ start_idx = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(1, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+ start_idx2 = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(0, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+ return cand
+
+
+def expand_dims(v, dims):
+ """
+ Expand the tensor `v` to the dim `dims`.
+
+ Args:
+ `v`: a PyTorch tensor with shape [N].
+ `dim`: a `int`.
+ Returns:
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+ """
+ return v[(...,) + (None,) * (dims - 1)]
diff --git a/diffusion/how to export onnx.md b/diffusion/how to export onnx.md
new file mode 100644
index 0000000000000000000000000000000000000000..6d22719fd1a8e9d034e6224cc95f4b50d44a0320
--- /dev/null
+++ b/diffusion/how to export onnx.md
@@ -0,0 +1,4 @@
+- Open [onnx_export](onnx_export.py)
+- project_name = "dddsp" change "project_name" to your project name
+- model_path = f'{project_name}/model_500000.pt' change "model_path" to your model path
+- Run
\ No newline at end of file
diff --git a/diffusion/infer_gt_mel.py b/diffusion/infer_gt_mel.py
new file mode 100644
index 0000000000000000000000000000000000000000..033b821a5d21a1232f1786bce5616b12e01488ad
--- /dev/null
+++ b/diffusion/infer_gt_mel.py
@@ -0,0 +1,74 @@
+import numpy as np
+import torch
+import torch.nn.functional as F
+from diffusion.unit2mel import load_model_vocoder
+
+
+class DiffGtMel:
+ def __init__(self, project_path=None, device=None):
+ self.project_path = project_path
+ if device is not None:
+ self.device = device
+ else:
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.model = None
+ self.vocoder = None
+ self.args = None
+
+ def flush_model(self, project_path, ddsp_config=None):
+ if (self.model is None) or (project_path != self.project_path):
+ model, vocoder, args = load_model_vocoder(project_path, device=self.device)
+ if self.check_args(ddsp_config, args):
+ self.model = model
+ self.vocoder = vocoder
+ self.args = args
+
+ def check_args(self, args1, args2):
+ if args1.data.block_size != args2.data.block_size:
+ raise ValueError("DDSP与DIFF模型的block_size不一致")
+ if args1.data.sampling_rate != args2.data.sampling_rate:
+ raise ValueError("DDSP与DIFF模型的sampling_rate不一致")
+ if args1.data.encoder != args2.data.encoder:
+ raise ValueError("DDSP与DIFF模型的encoder不一致")
+ return True
+
+ def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm',
+ spk_mix_dict=None, start_frame=0):
+ input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate)
+ out_mel = self.model(
+ hubert,
+ f0,
+ volume,
+ spk_id=spk_id,
+ spk_mix_dict=spk_mix_dict,
+ gt_spec=input_mel,
+ infer=True,
+ infer_speedup=acc,
+ method=method,
+ k_step=k_step,
+ use_tqdm=False)
+ if start_frame > 0:
+ out_mel = out_mel[:, start_frame:, :]
+ f0 = f0[:, start_frame:, :]
+ output = self.vocoder.infer(out_mel, f0)
+ if start_frame > 0:
+ output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0))
+ return output
+
+ def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0,
+ use_silence=False, spk_mix_dict=None):
+ start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
+ if use_silence:
+ audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:]
+ f0 = f0[:, start_frame:, :]
+ hubert = hubert[:, start_frame:, :]
+ volume = volume[:, start_frame:, :]
+ _start_frame = 0
+ else:
+ _start_frame = start_frame
+ audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step,
+ method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame)
+ if use_silence:
+ if start_frame > 0:
+ audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0))
+ return audio
diff --git a/diffusion/logger/__init__.py b/diffusion/logger/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/diffusion/logger/saver.py b/diffusion/logger/saver.py
new file mode 100644
index 0000000000000000000000000000000000000000..ef78b52b6bcd32106f962b731d3784d72d5f0cce
--- /dev/null
+++ b/diffusion/logger/saver.py
@@ -0,0 +1,150 @@
+'''
+author: wayn391@mastertones
+'''
+
+import os
+import json
+import time
+import yaml
+import datetime
+import torch
+import matplotlib.pyplot as plt
+from . import utils
+from torch.utils.tensorboard import SummaryWriter
+
+class Saver(object):
+ def __init__(
+ self,
+ args,
+ initial_global_step=-1):
+
+ self.expdir = args.env.expdir
+ self.sample_rate = args.data.sampling_rate
+
+ # cold start
+ self.global_step = initial_global_step
+ self.init_time = time.time()
+ self.last_time = time.time()
+
+ # makedirs
+ os.makedirs(self.expdir, exist_ok=True)
+
+ # path
+ self.path_log_info = os.path.join(self.expdir, 'log_info.txt')
+
+ # ckpt
+ os.makedirs(self.expdir, exist_ok=True)
+
+ # writer
+ self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
+
+ # save config
+ path_config = os.path.join(self.expdir, 'config.yaml')
+ with open(path_config, "w") as out_config:
+ yaml.dump(dict(args), out_config)
+
+
+ def log_info(self, msg):
+ '''log method'''
+ if isinstance(msg, dict):
+ msg_list = []
+ for k, v in msg.items():
+ tmp_str = ''
+ if isinstance(v, int):
+ tmp_str = '{}: {:,}'.format(k, v)
+ else:
+ tmp_str = '{}: {}'.format(k, v)
+
+ msg_list.append(tmp_str)
+ msg_str = '\n'.join(msg_list)
+ else:
+ msg_str = msg
+
+ # dsplay
+ print(msg_str)
+
+ # save
+ with open(self.path_log_info, 'a') as fp:
+ fp.write(msg_str+'\n')
+
+ def log_value(self, dict):
+ for k, v in dict.items():
+ self.writer.add_scalar(k, v, self.global_step)
+
+ def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):
+ spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
+ spec = spec_cat[0]
+ if isinstance(spec, torch.Tensor):
+ spec = spec.cpu().numpy()
+ fig = plt.figure(figsize=(12, 9))
+ plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
+ plt.tight_layout()
+ self.writer.add_figure(name, fig, self.global_step)
+
+ def log_audio(self, dict):
+ for k, v in dict.items():
+ self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
+
+ def get_interval_time(self, update=True):
+ cur_time = time.time()
+ time_interval = cur_time - self.last_time
+ if update:
+ self.last_time = cur_time
+ return time_interval
+
+ def get_total_time(self, to_str=True):
+ total_time = time.time() - self.init_time
+ if to_str:
+ total_time = str(datetime.timedelta(
+ seconds=total_time))[:-5]
+ return total_time
+
+ def save_model(
+ self,
+ model,
+ optimizer,
+ name='model',
+ postfix='',
+ to_json=False):
+ # path
+ if postfix:
+ postfix = '_' + postfix
+ path_pt = os.path.join(
+ self.expdir , name+postfix+'.pt')
+
+ # check
+ print(' [*] model checkpoint saved: {}'.format(path_pt))
+
+ # save
+ if optimizer is not None:
+ torch.save({
+ 'global_step': self.global_step,
+ 'model': model.state_dict(),
+ 'optimizer': optimizer.state_dict()}, path_pt)
+ else:
+ torch.save({
+ 'global_step': self.global_step,
+ 'model': model.state_dict()}, path_pt)
+
+ # to json
+ if to_json:
+ path_json = os.path.join(
+ self.expdir , name+'.json')
+ utils.to_json(path_params, path_json)
+
+ def delete_model(self, name='model', postfix=''):
+ # path
+ if postfix:
+ postfix = '_' + postfix
+ path_pt = os.path.join(
+ self.expdir , name+postfix+'.pt')
+
+ # delete
+ if os.path.exists(path_pt):
+ os.remove(path_pt)
+ print(' [*] model checkpoint deleted: {}'.format(path_pt))
+
+ def global_step_increment(self):
+ self.global_step += 1
+
+
diff --git a/diffusion/logger/utils.py b/diffusion/logger/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..485681ced897980dc0bf5b149308245bbd708de9
--- /dev/null
+++ b/diffusion/logger/utils.py
@@ -0,0 +1,126 @@
+import os
+import yaml
+import json
+import pickle
+import torch
+
+def traverse_dir(
+ root_dir,
+ extensions,
+ amount=None,
+ str_include=None,
+ str_exclude=None,
+ is_pure=False,
+ is_sort=False,
+ is_ext=True):
+
+ file_list = []
+ cnt = 0
+ for root, _, files in os.walk(root_dir):
+ for file in files:
+ if any([file.endswith(f".{ext}") for ext in extensions]):
+ # path
+ mix_path = os.path.join(root, file)
+ pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
+
+ # amount
+ if (amount is not None) and (cnt == amount):
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+ # check string
+ if (str_include is not None) and (str_include not in pure_path):
+ continue
+ if (str_exclude is not None) and (str_exclude in pure_path):
+ continue
+
+ if not is_ext:
+ ext = pure_path.split('.')[-1]
+ pure_path = pure_path[:-(len(ext)+1)]
+ file_list.append(pure_path)
+ cnt += 1
+ if is_sort:
+ file_list.sort()
+ return file_list
+
+
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+def get_network_paras_amount(model_dict):
+ info = dict()
+ for model_name, model in model_dict.items():
+ # all_params = sum(p.numel() for p in model.parameters())
+ trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
+
+ info[model_name] = trainable_params
+ return info
+
+
+def load_config(path_config):
+ with open(path_config, "r") as config:
+ args = yaml.safe_load(config)
+ args = DotDict(args)
+ # print(args)
+ return args
+
+def save_config(path_config,config):
+ config = dict(config)
+ with open(path_config, "w") as f:
+ yaml.dump(config, f)
+
+def to_json(path_params, path_json):
+ params = torch.load(path_params, map_location=torch.device('cpu'))
+ raw_state_dict = {}
+ for k, v in params.items():
+ val = v.flatten().numpy().tolist()
+ raw_state_dict[k] = val
+
+ with open(path_json, 'w') as outfile:
+ json.dump(raw_state_dict, outfile,indent= "\t")
+
+
+def convert_tensor_to_numpy(tensor, is_squeeze=True):
+ if is_squeeze:
+ tensor = tensor.squeeze()
+ if tensor.requires_grad:
+ tensor = tensor.detach()
+ if tensor.is_cuda:
+ tensor = tensor.cpu()
+ return tensor.numpy()
+
+
+def load_model(
+ expdir,
+ model,
+ optimizer,
+ name='model',
+ postfix='',
+ device='cpu'):
+ if postfix == '':
+ postfix = '_' + postfix
+ path = os.path.join(expdir, name+postfix)
+ path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
+ global_step = 0
+ if len(path_pt) > 0:
+ steps = [s[len(path):] for s in path_pt]
+ maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
+ if maxstep >= 0:
+ path_pt = path+str(maxstep)+'.pt'
+ else:
+ path_pt = path+'best.pt'
+ print(' [*] restoring model from', path_pt)
+ ckpt = torch.load(path_pt, map_location=torch.device(device))
+ global_step = ckpt['global_step']
+ model.load_state_dict(ckpt['model'], strict=False)
+ if ckpt.get('optimizer') != None:
+ optimizer.load_state_dict(ckpt['optimizer'])
+ return global_step, model, optimizer
diff --git a/diffusion/onnx_export.py b/diffusion/onnx_export.py
new file mode 100644
index 0000000000000000000000000000000000000000..5deda785cf22b341f7d2e6399ef5fcdad6fe129e
--- /dev/null
+++ b/diffusion/onnx_export.py
@@ -0,0 +1,226 @@
+from diffusion_onnx import GaussianDiffusion
+import os
+import yaml
+import torch
+import torch.nn as nn
+import numpy as np
+from wavenet import WaveNet
+import torch.nn.functional as F
+import diffusion
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+def load_model_vocoder(
+ model_path,
+ device='cpu'):
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
+ with open(config_file, "r") as config:
+ args = yaml.safe_load(config)
+ args = DotDict(args)
+
+ # load model
+ model = Unit2Mel(
+ args.data.encoder_out_channels,
+ args.model.n_spk,
+ args.model.use_pitch_aug,
+ 128,
+ args.model.n_layers,
+ args.model.n_chans,
+ args.model.n_hidden)
+
+ print(' [Loading] ' + model_path)
+ ckpt = torch.load(model_path, map_location=torch.device(device))
+ model.to(device)
+ model.load_state_dict(ckpt['model'])
+ model.eval()
+ return model, args
+
+
+class Unit2Mel(nn.Module):
+ def __init__(
+ self,
+ input_channel,
+ n_spk,
+ use_pitch_aug=False,
+ out_dims=128,
+ n_layers=20,
+ n_chans=384,
+ n_hidden=256):
+ super().__init__()
+ self.unit_embed = nn.Linear(input_channel, n_hidden)
+ self.f0_embed = nn.Linear(1, n_hidden)
+ self.volume_embed = nn.Linear(1, n_hidden)
+ if use_pitch_aug:
+ self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
+ else:
+ self.aug_shift_embed = None
+ self.n_spk = n_spk
+ if n_spk is not None and n_spk > 1:
+ self.spk_embed = nn.Embedding(n_spk, n_hidden)
+
+ # diffusion
+ self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden)
+ self.hidden_size = n_hidden
+ self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden))
+
+
+
+ def forward(self, units, mel2ph, f0, volume, g = None):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+
+ decoder_inp = F.pad(units, [0, 0, 1, 0])
+ mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]])
+ units = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
+
+ x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1))
+
+ if self.n_spk is not None and self.n_spk > 1: # [N, S] * [S, B, 1, H]
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
+ g = g * self.speaker_map # [N, S, B, 1, H]
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
+ x = x.transpose(1, 2) + g
+ return x
+ else:
+ return x.transpose(1, 2)
+
+
+ def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
+ if self.n_spk is not None and self.n_spk > 1:
+ if spk_mix_dict is not None:
+ spk_embed_mix = torch.zeros((1,1,self.hidden_size))
+ for k, v in spk_mix_dict.items():
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
+ spk_embeddd = self.spk_embed(spk_id_torch)
+ self.speaker_map[k] = spk_embeddd
+ spk_embed_mix = spk_embed_mix + v * spk_embeddd
+ x = x + spk_embed_mix
+ else:
+ x = x + self.spk_embed(spk_id - 1)
+ self.speaker_map = self.speaker_map.unsqueeze(0)
+ self.speaker_map = self.speaker_map.detach()
+ return x.transpose(1, 2)
+
+ def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True):
+ hubert_hidden_size = 768
+ n_frames = 100
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
+ f0 = torch.randn((1, n_frames))
+ volume = torch.randn((1, n_frames))
+ spk_mix = []
+ spks = {}
+ if self.n_spk is not None and self.n_spk > 1:
+ for i in range(self.n_spk):
+ spk_mix.append(1.0/float(self.n_spk))
+ spks.update({i:1.0/float(self.n_spk)})
+ spk_mix = torch.tensor(spk_mix)
+ spk_mix = spk_mix.repeat(n_frames, 1)
+ orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
+ outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
+ if export_encoder:
+ torch.onnx.export(
+ self,
+ (hubert, mel2ph, f0, volume, spk_mix),
+ f"{project_name}_encoder.onnx",
+ input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
+ output_names=["mel_pred"],
+ dynamic_axes={
+ "hubert": [1],
+ "f0": [1],
+ "volume": [1],
+ "mel2ph": [1],
+ "spk_mix": [0],
+ },
+ opset_version=16
+ )
+
+ self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after)
+
+ def ExportOnnx(self, project_name=None):
+ hubert_hidden_size = 768
+ n_frames = 100
+ hubert = torch.randn((1, n_frames, hubert_hidden_size))
+ mel2ph = torch.arange(end=n_frames).unsqueeze(0).long()
+ f0 = torch.randn((1, n_frames))
+ volume = torch.randn((1, n_frames))
+ spk_mix = []
+ spks = {}
+ if self.n_spk is not None and self.n_spk > 1:
+ for i in range(self.n_spk):
+ spk_mix.append(1.0/float(self.n_spk))
+ spks.update({i:1.0/float(self.n_spk)})
+ spk_mix = torch.tensor(spk_mix)
+ orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks)
+ outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix)
+
+ torch.onnx.export(
+ self,
+ (hubert, mel2ph, f0, volume, spk_mix),
+ f"{project_name}_encoder.onnx",
+ input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"],
+ output_names=["mel_pred"],
+ dynamic_axes={
+ "hubert": [1],
+ "f0": [1],
+ "volume": [1],
+ "mel2ph": [1]
+ },
+ opset_version=16
+ )
+
+ condition = torch.randn(1,self.decoder.n_hidden,n_frames)
+ noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32)
+ pndm_speedup = torch.LongTensor([100])
+ K_steps = torch.LongTensor([1000])
+ self.decoder = torch.jit.script(self.decoder)
+ self.decoder(condition, noise, pndm_speedup, K_steps)
+
+ torch.onnx.export(
+ self.decoder,
+ (condition, noise, pndm_speedup, K_steps),
+ f"{project_name}_diffusion.onnx",
+ input_names=["condition", "noise", "pndm_speedup", "K_steps"],
+ output_names=["mel"],
+ dynamic_axes={
+ "condition": [2],
+ "noise": [3],
+ },
+ opset_version=16
+ )
+
+
+if __name__ == "__main__":
+ project_name = "dddsp"
+ model_path = f'{project_name}/model_500000.pt'
+
+ model, _ = load_model_vocoder(model_path)
+
+ # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样)
+ model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True)
+
+ # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可)
+ # model.ExportOnnx(project_name)
+
diff --git a/diffusion/solver.py b/diffusion/solver.py
new file mode 100644
index 0000000000000000000000000000000000000000..aaf0b21591b42fa903424f8d44fef88d7d791e57
--- /dev/null
+++ b/diffusion/solver.py
@@ -0,0 +1,195 @@
+import os
+import time
+import numpy as np
+import torch
+import librosa
+from diffusion.logger.saver import Saver
+from diffusion.logger import utils
+from torch import autocast
+from torch.cuda.amp import GradScaler
+
+def test(args, model, vocoder, loader_test, saver):
+ print(' [*] testing...')
+ model.eval()
+
+ # losses
+ test_loss = 0.
+
+ # intialization
+ num_batches = len(loader_test)
+ rtf_all = []
+
+ # run
+ with torch.no_grad():
+ for bidx, data in enumerate(loader_test):
+ fn = data['name'][0].split("/")[-1]
+ speaker = data['name'][0].split("/")[-2]
+ print('--------')
+ print('{}/{} - {}'.format(bidx, num_batches, fn))
+
+ # unpack data
+ for k in data.keys():
+ if not k.startswith('name'):
+ data[k] = data[k].to(args.device)
+ print('>>', data['name'][0])
+
+ # forward
+ st_time = time.time()
+ mel = model(
+ data['units'],
+ data['f0'],
+ data['volume'],
+ data['spk_id'],
+ gt_spec=None,
+ infer=True,
+ infer_speedup=args.infer.speedup,
+ method=args.infer.method)
+ signal = vocoder.infer(mel, data['f0'])
+ ed_time = time.time()
+
+ # RTF
+ run_time = ed_time - st_time
+ song_time = signal.shape[-1] / args.data.sampling_rate
+ rtf = run_time / song_time
+ print('RTF: {} | {} / {}'.format(rtf, run_time, song_time))
+ rtf_all.append(rtf)
+
+ # loss
+ for i in range(args.train.batch_size):
+ loss = model(
+ data['units'],
+ data['f0'],
+ data['volume'],
+ data['spk_id'],
+ gt_spec=data['mel'],
+ infer=False)
+ test_loss += loss.item()
+
+ # log mel
+ saver.log_spec(f"{speaker}_{fn}.wav", data['mel'], mel)
+
+ # log audi
+ path_audio = data['name_ext'][0]
+ audio, sr = librosa.load(path_audio, sr=args.data.sampling_rate)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio)
+ audio = torch.from_numpy(audio).unsqueeze(0).to(signal)
+ saver.log_audio({f"{speaker}_{fn}_gt.wav": audio,f"{speaker}_{fn}_pred.wav": signal})
+ # report
+ test_loss /= args.train.batch_size
+ test_loss /= num_batches
+
+ # check
+ print(' [test_loss] test_loss:', test_loss)
+ print(' Real Time Factor', np.mean(rtf_all))
+ return test_loss
+
+
+def train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_test):
+ # saver
+ saver = Saver(args, initial_global_step=initial_global_step)
+
+ # model size
+ params_count = utils.get_network_paras_amount({'model': model})
+ saver.log_info('--- model size ---')
+ saver.log_info(params_count)
+
+ # run
+ num_batches = len(loader_train)
+ model.train()
+ saver.log_info('======= start training =======')
+ scaler = GradScaler()
+ if args.train.amp_dtype == 'fp32':
+ dtype = torch.float32
+ elif args.train.amp_dtype == 'fp16':
+ dtype = torch.float16
+ elif args.train.amp_dtype == 'bf16':
+ dtype = torch.bfloat16
+ else:
+ raise ValueError(' [x] Unknown amp_dtype: ' + args.train.amp_dtype)
+ saver.log_info("epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step")
+ for epoch in range(args.train.epochs):
+ for batch_idx, data in enumerate(loader_train):
+ saver.global_step_increment()
+ optimizer.zero_grad()
+
+ # unpack data
+ for k in data.keys():
+ if not k.startswith('name'):
+ data[k] = data[k].to(args.device)
+
+ # forward
+ if dtype == torch.float32:
+ loss = model(data['units'].float(), data['f0'], data['volume'], data['spk_id'],
+ aug_shift = data['aug_shift'], gt_spec=data['mel'].float(), infer=False)
+ else:
+ with autocast(device_type=args.device, dtype=dtype):
+ loss = model(data['units'], data['f0'], data['volume'], data['spk_id'],
+ aug_shift = data['aug_shift'], gt_spec=data['mel'], infer=False)
+
+ # handle nan loss
+ if torch.isnan(loss):
+ raise ValueError(' [x] nan loss ')
+ else:
+ # backpropagate
+ if dtype == torch.float32:
+ loss.backward()
+ optimizer.step()
+ else:
+ scaler.scale(loss).backward()
+ scaler.step(optimizer)
+ scaler.update()
+ scheduler.step()
+
+ # log loss
+ if saver.global_step % args.train.interval_log == 0:
+ current_lr = optimizer.param_groups[0]['lr']
+ saver.log_info(
+ 'epoch: {} | {:3d}/{:3d} | {} | batch/s: {:.2f} | lr: {:.6} | loss: {:.3f} | time: {} | step: {}'.format(
+ epoch,
+ batch_idx,
+ num_batches,
+ args.env.expdir,
+ args.train.interval_log/saver.get_interval_time(),
+ current_lr,
+ loss.item(),
+ saver.get_total_time(),
+ saver.global_step
+ )
+ )
+
+ saver.log_value({
+ 'train/loss': loss.item()
+ })
+
+ saver.log_value({
+ 'train/lr': current_lr
+ })
+
+ # validation
+ if saver.global_step % args.train.interval_val == 0:
+ optimizer_save = optimizer if args.train.save_opt else None
+
+ # save latest
+ saver.save_model(model, optimizer_save, postfix=f'{saver.global_step}')
+ last_val_step = saver.global_step - args.train.interval_val
+ if last_val_step % args.train.interval_force_save != 0:
+ saver.delete_model(postfix=f'{last_val_step}')
+
+ # run testing set
+ test_loss = test(args, model, vocoder, loader_test, saver)
+
+ # log loss
+ saver.log_info(
+ ' --- --- \nloss: {:.3f}. '.format(
+ test_loss,
+ )
+ )
+
+ saver.log_value({
+ 'validation/loss': test_loss
+ })
+
+ model.train()
+
+
diff --git a/diffusion/unit2mel.py b/diffusion/unit2mel.py
new file mode 100644
index 0000000000000000000000000000000000000000..e6b738966698848fe5acca8c0752b995c839a793
--- /dev/null
+++ b/diffusion/unit2mel.py
@@ -0,0 +1,100 @@
+import os
+import yaml
+import torch
+import torch.nn as nn
+import numpy as np
+from .diffusion import GaussianDiffusion
+from .wavenet import WaveNet
+from .vocoder import Vocoder
+
+class DotDict(dict):
+ def __getattr__(*args):
+ val = dict.get(*args)
+ return DotDict(val) if type(val) is dict else val
+
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+
+def load_model_vocoder(
+ model_path,
+ device='cpu',
+ config_path = None
+ ):
+ if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
+ else: config_file = config_path
+
+ with open(config_file, "r") as config:
+ args = yaml.safe_load(config)
+ args = DotDict(args)
+
+ # load vocoder
+ vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device)
+
+ # load model
+ model = Unit2Mel(
+ args.data.encoder_out_channels,
+ args.model.n_spk,
+ args.model.use_pitch_aug,
+ vocoder.dimension,
+ args.model.n_layers,
+ args.model.n_chans,
+ args.model.n_hidden)
+
+ print(' [Loading] ' + model_path)
+ ckpt = torch.load(model_path, map_location=torch.device(device))
+ model.to(device)
+ model.load_state_dict(ckpt['model'])
+ model.eval()
+ return model, vocoder, args
+
+
+class Unit2Mel(nn.Module):
+ def __init__(
+ self,
+ input_channel,
+ n_spk,
+ use_pitch_aug=False,
+ out_dims=128,
+ n_layers=20,
+ n_chans=384,
+ n_hidden=256):
+ super().__init__()
+ self.unit_embed = nn.Linear(input_channel, n_hidden)
+ self.f0_embed = nn.Linear(1, n_hidden)
+ self.volume_embed = nn.Linear(1, n_hidden)
+ if use_pitch_aug:
+ self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False)
+ else:
+ self.aug_shift_embed = None
+ self.n_spk = n_spk
+ if n_spk is not None and n_spk > 1:
+ self.spk_embed = nn.Embedding(n_spk, n_hidden)
+
+ # diffusion
+ self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims)
+
+ def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None,
+ gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True):
+
+ '''
+ input:
+ B x n_frames x n_unit
+ return:
+ dict of B x n_frames x feat
+ '''
+
+ x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume)
+ if self.n_spk is not None and self.n_spk > 1:
+ if spk_mix_dict is not None:
+ for k, v in spk_mix_dict.items():
+ spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device)
+ x = x + v * self.spk_embed(spk_id_torch)
+ else:
+ x = x + self.spk_embed(spk_id)
+ if self.aug_shift_embed is not None and aug_shift is not None:
+ x = x + self.aug_shift_embed(aug_shift / 5)
+ x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm)
+
+ return x
+
diff --git a/diffusion/vocoder.py b/diffusion/vocoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..bbaa47f64fd5a3191a24dfaa054c423fa86e5bae
--- /dev/null
+++ b/diffusion/vocoder.py
@@ -0,0 +1,94 @@
+import torch
+from vdecoder.nsf_hifigan.nvSTFT import STFT
+from vdecoder.nsf_hifigan.models import load_model,load_config
+from torchaudio.transforms import Resample
+
+
+class Vocoder:
+ def __init__(self, vocoder_type, vocoder_ckpt, device = None):
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+
+ if vocoder_type == 'nsf-hifigan':
+ self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device)
+ elif vocoder_type == 'nsf-hifigan-log10':
+ self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device)
+ else:
+ raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")
+
+ self.resample_kernel = {}
+ self.vocoder_sample_rate = self.vocoder.sample_rate()
+ self.vocoder_hop_size = self.vocoder.hop_size()
+ self.dimension = self.vocoder.dimension()
+
+ def extract(self, audio, sample_rate, keyshift=0):
+
+ # resample
+ if sample_rate == self.vocoder_sample_rate:
+ audio_res = audio
+ else:
+ key_str = str(sample_rate)
+ if key_str not in self.resample_kernel:
+ self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device)
+ audio_res = self.resample_kernel[key_str](audio)
+
+ # extract
+ mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins
+ return mel
+
+ def infer(self, mel, f0):
+ f0 = f0[:,:mel.size(1),0] # B, n_frames
+ audio = self.vocoder(mel, f0)
+ return audio
+
+
+class NsfHifiGAN(torch.nn.Module):
+ def __init__(self, model_path, device=None):
+ super().__init__()
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+ self.model_path = model_path
+ self.model = None
+ self.h = load_config(model_path)
+ self.stft = STFT(
+ self.h.sampling_rate,
+ self.h.num_mels,
+ self.h.n_fft,
+ self.h.win_size,
+ self.h.hop_size,
+ self.h.fmin,
+ self.h.fmax)
+
+ def sample_rate(self):
+ return self.h.sampling_rate
+
+ def hop_size(self):
+ return self.h.hop_size
+
+ def dimension(self):
+ return self.h.num_mels
+
+ def extract(self, audio, keyshift=0):
+ mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins
+ return mel
+
+ def forward(self, mel, f0):
+ if self.model is None:
+ print('| Load HifiGAN: ', self.model_path)
+ self.model, self.h = load_model(self.model_path, device=self.device)
+ with torch.no_grad():
+ c = mel.transpose(1, 2)
+ audio = self.model(c, f0)
+ return audio
+
+class NsfHifiGANLog10(NsfHifiGAN):
+ def forward(self, mel, f0):
+ if self.model is None:
+ print('| Load HifiGAN: ', self.model_path)
+ self.model, self.h = load_model(self.model_path, device=self.device)
+ with torch.no_grad():
+ c = 0.434294 * mel.transpose(1, 2)
+ audio = self.model(c, f0)
+ return audio
\ No newline at end of file
diff --git a/diffusion/wavenet.py b/diffusion/wavenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..3d48c7eaaa0e8191b27a5d1890eb657cbcc0d143
--- /dev/null
+++ b/diffusion/wavenet.py
@@ -0,0 +1,108 @@
+import math
+from math import sqrt
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import Mish
+
+
+class Conv1d(torch.nn.Conv1d):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ nn.init.kaiming_normal_(self.weight)
+
+
+class SinusoidalPosEmb(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+
+ def forward(self, x):
+ device = x.device
+ half_dim = self.dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
+ emb = x[:, None] * emb[None, :]
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+class ResidualBlock(nn.Module):
+ def __init__(self, encoder_hidden, residual_channels, dilation):
+ super().__init__()
+ self.residual_channels = residual_channels
+ self.dilated_conv = nn.Conv1d(
+ residual_channels,
+ 2 * residual_channels,
+ kernel_size=3,
+ padding=dilation,
+ dilation=dilation
+ )
+ self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
+ self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1)
+ self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1)
+
+ def forward(self, x, conditioner, diffusion_step):
+ diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
+ conditioner = self.conditioner_projection(conditioner)
+ y = x + diffusion_step
+
+ y = self.dilated_conv(y) + conditioner
+
+ # Using torch.split instead of torch.chunk to avoid using onnx::Slice
+ gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+ y = torch.sigmoid(gate) * torch.tanh(filter)
+
+ y = self.output_projection(y)
+
+ # Using torch.split instead of torch.chunk to avoid using onnx::Slice
+ residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
+ return (x + residual) / math.sqrt(2.0), skip
+
+
+class WaveNet(nn.Module):
+ def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256):
+ super().__init__()
+ self.input_projection = Conv1d(in_dims, n_chans, 1)
+ self.diffusion_embedding = SinusoidalPosEmb(n_chans)
+ self.mlp = nn.Sequential(
+ nn.Linear(n_chans, n_chans * 4),
+ Mish(),
+ nn.Linear(n_chans * 4, n_chans)
+ )
+ self.residual_layers = nn.ModuleList([
+ ResidualBlock(
+ encoder_hidden=n_hidden,
+ residual_channels=n_chans,
+ dilation=1
+ )
+ for i in range(n_layers)
+ ])
+ self.skip_projection = Conv1d(n_chans, n_chans, 1)
+ self.output_projection = Conv1d(n_chans, in_dims, 1)
+ nn.init.zeros_(self.output_projection.weight)
+
+ def forward(self, spec, diffusion_step, cond):
+ """
+ :param spec: [B, 1, M, T]
+ :param diffusion_step: [B, 1]
+ :param cond: [B, M, T]
+ :return:
+ """
+ x = spec.squeeze(1)
+ x = self.input_projection(x) # [B, residual_channel, T]
+
+ x = F.relu(x)
+ diffusion_step = self.diffusion_embedding(diffusion_step)
+ diffusion_step = self.mlp(diffusion_step)
+ skip = []
+ for layer in self.residual_layers:
+ x, skip_connection = layer(x, cond, diffusion_step)
+ skip.append(skip_connection)
+
+ x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
+ x = self.skip_projection(x)
+ x = F.relu(x)
+ x = self.output_projection(x) # [B, mel_bins, T]
+ return x[:, None, :, :]
diff --git a/inference/__init__.py b/inference/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/inference/chunks_temp.json b/inference/chunks_temp.json
new file mode 100644
index 0000000000000000000000000000000000000000..a286da339c100056bd2f7abc8fa49e05ac2fa68a
--- /dev/null
+++ b/inference/chunks_temp.json
@@ -0,0 +1 @@
+{"info": "temp_dict"}
\ No newline at end of file
diff --git a/inference/infer_tool.py b/inference/infer_tool.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa08db415a9b0af97a5d726d1f7e61834e1c4e1c
--- /dev/null
+++ b/inference/infer_tool.py
@@ -0,0 +1,407 @@
+import hashlib
+import io
+import json
+import logging
+import os
+import time
+from pathlib import Path
+from inference import slicer
+import gc
+
+import librosa
+import numpy as np
+# import onnxruntime
+import soundfile
+import torch
+import torchaudio
+
+import cluster
+import utils
+from models import SynthesizerTrn
+
+from diffusion.unit2mel import load_model_vocoder
+import yaml
+
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+
+
+def read_temp(file_name):
+ if not os.path.exists(file_name):
+ with open(file_name, "w") as f:
+ f.write(json.dumps({"info": "temp_dict"}))
+ return {}
+ else:
+ try:
+ with open(file_name, "r") as f:
+ data = f.read()
+ data_dict = json.loads(data)
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
+ f_name = file_name.replace("\\", "/").split("/")[-1]
+ print(f"clean {f_name}")
+ for wav_hash in list(data_dict.keys()):
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
+ del data_dict[wav_hash]
+ except Exception as e:
+ print(e)
+ print(f"{file_name} error,auto rebuild file")
+ data_dict = {"info": "temp_dict"}
+ return data_dict
+
+
+def write_temp(file_name, data):
+ with open(file_name, "w") as f:
+ f.write(json.dumps(data))
+
+
+def timeit(func):
+ def run(*args, **kwargs):
+ t = time.time()
+ res = func(*args, **kwargs)
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
+ return res
+
+ return run
+
+
+def format_wav(audio_path):
+ if Path(audio_path).suffix == '.wav':
+ return
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
+
+
+def get_end_file(dir_path, end):
+ file_lists = []
+ for root, dirs, files in os.walk(dir_path):
+ files = [f for f in files if f[0] != '.']
+ dirs[:] = [d for d in dirs if d[0] != '.']
+ for f_file in files:
+ if f_file.endswith(end):
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
+ return file_lists
+
+
+def get_md5(content):
+ return hashlib.new("md5", content).hexdigest()
+
+def fill_a_to_b(a, b):
+ if len(a) < len(b):
+ for _ in range(0, len(b) - len(a)):
+ a.append(a[0])
+
+def mkdir(paths: list):
+ for path in paths:
+ if not os.path.exists(path):
+ os.mkdir(path)
+
+def pad_array(arr, target_length):
+ current_length = arr.shape[0]
+ if current_length >= target_length:
+ return arr
+ else:
+ pad_width = target_length - current_length
+ pad_left = pad_width // 2
+ pad_right = pad_width - pad_left
+ padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
+ return padded_arr
+
+def split_list_by_n(list_collection, n, pre=0):
+ for i in range(0, len(list_collection), n):
+ yield list_collection[i-pre if i-pre>=0 else i: i + n]
+
+
+class F0FilterException(Exception):
+ pass
+
+class Svc(object):
+ def __init__(self, net_g_path, config_path,
+ device=None,
+ cluster_model_path="logs/44k/kmeans_10000.pt",
+ nsf_hifigan_enhance = False,
+ diffusion_model_path="logs/44k/diffusion/model_0.pt",
+ diffusion_config_path="configs/diffusion.yaml",
+ shallow_diffusion = False,
+ only_diffusion = False,
+ ):
+ self.net_g_path = net_g_path
+ self.only_diffusion = only_diffusion
+ self.shallow_diffusion = shallow_diffusion
+ if device is None:
+ # self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ self.dev = torch.device("cpu")
+ else:
+ self.dev = torch.device(device)
+ self.net_g_ms = None
+ if not self.only_diffusion:
+ self.hps_ms = utils.get_hparams_from_file(config_path)
+ self.target_sample = self.hps_ms.data.sampling_rate
+ self.hop_size = self.hps_ms.data.hop_length
+ self.spk2id = self.hps_ms.spk
+ try:
+ self.speech_encoder = self.hps_ms.model.speech_encoder
+ except Exception as e:
+ self.speech_encoder = 'vec768l12'
+
+ self.nsf_hifigan_enhance = nsf_hifigan_enhance
+ if self.shallow_diffusion or self.only_diffusion:
+ if os.path.exists(diffusion_model_path) and os.path.exists(diffusion_model_path):
+ self.diffusion_model,self.vocoder,self.diffusion_args = load_model_vocoder(diffusion_model_path,self.dev,config_path=diffusion_config_path)
+ if self.only_diffusion:
+ self.target_sample = self.diffusion_args.data.sampling_rate
+ self.hop_size = self.diffusion_args.data.block_size
+ self.spk2id = self.diffusion_args.spk
+ self.speech_encoder = self.diffusion_args.data.encoder
+ else:
+ print("No diffusion model or config found. Shallow diffusion mode will False")
+ self.shallow_diffusion = self.only_diffusion = False
+
+ # load hubert and model
+ if not self.only_diffusion:
+ self.load_model()
+ self.hubert_model = utils.get_speech_encoder(self.speech_encoder,device=self.dev)
+ self.volume_extractor = utils.Volume_Extractor(self.hop_size)
+ else:
+ self.hubert_model = utils.get_speech_encoder(self.diffusion_args.data.encoder,device=self.dev)
+ self.volume_extractor = utils.Volume_Extractor(self.diffusion_args.data.block_size)
+
+ if os.path.exists(cluster_model_path):
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
+ if self.shallow_diffusion : self.nsf_hifigan_enhance = False
+ if self.nsf_hifigan_enhance:
+ from modules.enhancer import Enhancer
+ self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev)
+
+ def load_model(self):
+ # get model configuration
+ self.net_g_ms = SynthesizerTrn(
+ self.hps_ms.data.filter_length // 2 + 1,
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
+ **self.hps_ms.model)
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
+ if "half" in self.net_g_path and torch.cuda.is_available():
+ _ = self.net_g_ms.half().eval().to(self.dev)
+ else:
+ _ = self.net_g_ms.eval().to(self.dev)
+
+
+
+ def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter ,f0_predictor,cr_threshold=0.05):
+
+ f0_predictor_object = utils.get_f0_predictor(f0_predictor,hop_length=self.hop_size,sampling_rate=self.target_sample,device=self.dev,threshold=cr_threshold)
+
+ f0, uv = f0_predictor_object.compute_f0_uv(wav)
+ if f0_filter and sum(f0) == 0:
+ raise F0FilterException("No voice detected")
+ f0 = torch.FloatTensor(f0).to(self.dev)
+ uv = torch.FloatTensor(uv).to(self.dev)
+
+ f0 = f0 * 2 ** (tran / 12)
+ f0 = f0.unsqueeze(0)
+ uv = uv.unsqueeze(0)
+
+ wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
+ c = self.hubert_model.encoder(wav16k)
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
+
+ if cluster_infer_ratio !=0:
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
+ cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
+
+ c = c.unsqueeze(0)
+ return c, f0, uv
+
+ def infer(self, speaker, tran, raw_path,
+ cluster_infer_ratio=0,
+ auto_predict_f0=False,
+ noice_scale=0.4,
+ f0_filter=False,
+ f0_predictor='pm',
+ enhancer_adaptive_key = 0,
+ cr_threshold = 0.05,
+ k_step = 100
+ ):
+
+ speaker_id = self.spk2id.get(speaker)
+ if not speaker_id and type(speaker) is int:
+ if len(self.spk2id.__dict__) >= speaker:
+ speaker_id = speaker
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
+ wav, sr = librosa.load(raw_path, sr=self.target_sample)
+ c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter,f0_predictor,cr_threshold=cr_threshold)
+ if "half" in self.net_g_path and torch.cuda.is_available():
+ c = c.half()
+ with torch.no_grad():
+ start = time.time()
+ if not self.only_diffusion:
+ audio,f0 = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)
+ audio = audio[0,0].data.float()
+ if self.shallow_diffusion:
+ audio_mel = self.vocoder.extract(audio[None,:],self.target_sample)
+ else:
+ audio = torch.FloatTensor(wav).to(self.dev)
+ audio_mel = None
+ if self.only_diffusion or self.shallow_diffusion:
+ vol = self.volume_extractor.extract(audio[None,:])[None,:,None].to(self.dev)
+ f0 = f0[:,:,None]
+ c = c.transpose(-1,-2)
+ audio_mel = self.diffusion_model(
+ c,
+ f0,
+ vol,
+ spk_id = sid,
+ spk_mix_dict = None,
+ gt_spec=audio_mel,
+ infer=True,
+ infer_speedup=self.diffusion_args.infer.speedup,
+ method=self.diffusion_args.infer.method,
+ k_step=k_step)
+ audio = self.vocoder.infer(audio_mel, f0).squeeze()
+ if self.nsf_hifigan_enhance:
+ audio, _ = self.enhancer.enhance(
+ audio[None,:],
+ self.target_sample,
+ f0[:,:,None],
+ self.hps_ms.data.hop_length,
+ adaptive_key = enhancer_adaptive_key)
+ use_time = time.time() - start
+ print("vits use time:{}".format(use_time))
+ return audio, audio.shape[-1]
+
+ def clear_empty(self):
+ # clean up vram
+ torch.cuda.empty_cache()
+
+ def unload_model(self):
+ # unload model
+ self.net_g_ms = self.net_g_ms.to("cpu")
+ del self.net_g_ms
+ if hasattr(self,"enhancer"):
+ self.enhancer.enhancer = self.enhancer.enhancer.to("cpu")
+ del self.enhancer.enhancer
+ del self.enhancer
+ gc.collect()
+
+ def slice_inference(self,
+ raw_audio_path,
+ spk,
+ tran,
+ slice_db,
+ cluster_infer_ratio,
+ auto_predict_f0,
+ noice_scale,
+ pad_seconds=0.5,
+ clip_seconds=0,
+ lg_num=0,
+ lgr_num =0.75,
+ f0_predictor='pm',
+ enhancer_adaptive_key = 0,
+ cr_threshold = 0.05,
+ k_step = 100
+ ):
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
+ per_size = int(clip_seconds*audio_sr)
+ lg_size = int(lg_num*audio_sr)
+ lg_size_r = int(lg_size*lgr_num)
+ lg_size_c_l = (lg_size-lg_size_r)//2
+ lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
+ lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
+
+ audio = []
+ for (slice_tag, data) in audio_data:
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
+ # padd
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
+ if slice_tag:
+ print('jump empty segment')
+ _audio = np.zeros(length)
+ audio.extend(list(pad_array(_audio, length)))
+ continue
+ if per_size != 0:
+ datas = split_list_by_n(data, per_size,lg_size)
+ else:
+ datas = [data]
+ for k,dat in enumerate(datas):
+ per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
+ if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
+ # padd
+ pad_len = int(audio_sr * pad_seconds)
+ dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
+ raw_path = io.BytesIO()
+ soundfile.write(raw_path, dat, audio_sr, format="wav")
+ raw_path.seek(0)
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
+ cluster_infer_ratio=cluster_infer_ratio,
+ auto_predict_f0=auto_predict_f0,
+ noice_scale=noice_scale,
+ f0_predictor = f0_predictor,
+ enhancer_adaptive_key = enhancer_adaptive_key,
+ cr_threshold = cr_threshold,
+ k_step = k_step
+ )
+ _audio = out_audio.cpu().numpy()
+ pad_len = int(self.target_sample * pad_seconds)
+ _audio = _audio[pad_len:-pad_len]
+ _audio = pad_array(_audio, per_length)
+ if lg_size!=0 and k!=0:
+ lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
+ lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size]
+ lg_pre = lg1*(1-lg)+lg2*lg
+ audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
+ audio.extend(lg_pre)
+ _audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
+ audio.extend(list(_audio))
+ return np.array(audio)
+
+class RealTimeVC:
+ def __init__(self):
+ self.last_chunk = None
+ self.last_o = None
+ self.chunk_len = 16000 # chunk length
+ self.pre_len = 3840 # cross fade length, multiples of 640
+
+ # Input and output are 1-dimensional numpy waveform arrays
+
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
+ cluster_infer_ratio=0,
+ auto_predict_f0=False,
+ noice_scale=0.4,
+ f0_filter=False):
+
+ import maad
+ audio, sr = torchaudio.load(input_wav_path)
+ audio = audio.cpu().numpy()[0]
+ temp_wav = io.BytesIO()
+ if self.last_chunk is None:
+ input_wav_path.seek(0)
+
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
+ cluster_infer_ratio=cluster_infer_ratio,
+ auto_predict_f0=auto_predict_f0,
+ noice_scale=noice_scale,
+ f0_filter=f0_filter)
+
+ audio = audio.cpu().numpy()
+ self.last_chunk = audio[-self.pre_len:]
+ self.last_o = audio
+ return audio[-self.chunk_len:]
+ else:
+ audio = np.concatenate([self.last_chunk, audio])
+ soundfile.write(temp_wav, audio, sr, format="wav")
+ temp_wav.seek(0)
+
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
+ cluster_infer_ratio=cluster_infer_ratio,
+ auto_predict_f0=auto_predict_f0,
+ noice_scale=noice_scale,
+ f0_filter=f0_filter)
+
+ audio = audio.cpu().numpy()
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
+ self.last_chunk = audio[-self.pre_len:]
+ self.last_o = audio
+ return ret[self.chunk_len:2 * self.chunk_len]
+
\ No newline at end of file
diff --git a/inference/infer_tool_grad.py b/inference/infer_tool_grad.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2587d98209abcbdd6d199ca3142dcbc69a87428
--- /dev/null
+++ b/inference/infer_tool_grad.py
@@ -0,0 +1,171 @@
+import hashlib
+import json
+import logging
+import os
+import time
+from pathlib import Path
+import io
+import librosa
+import maad
+import numpy as np
+from inference import slicer
+import parselmouth
+import soundfile
+import torch
+import torchaudio
+
+# from hubert import hubert_model
+import utils
+from models import SynthesizerTrn
+logging.getLogger('numba').setLevel(logging.WARNING)
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+
+
+def resize2d_f0(x, target_len):
+ source = np.array(x)
+ source[source < 0.001] = np.nan
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
+ source)
+ res = np.nan_to_num(target)
+ return res
+
+
+def get_f0(x, p_len, f0_up_key=0):
+
+ time_step = 160 / 16000 * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
+ time_step=time_step / 1000, voicing_threshold=0.6,
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
+
+ pad_size = (p_len - len(f0) + 1) // 2
+ if(pad_size > 0 or p_len - len(f0) - pad_size > 0):
+ f0 = np.pad(
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant')
+
+ f0 *= pow(2, f0_up_key / 12)
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * \
+ 254 / (f0_mel_max - f0_mel_min) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(np.int)
+ return f0_coarse, f0
+
+
+def clean_pitch(input_pitch):
+ num_nan = np.sum(input_pitch == 1)
+ if num_nan / len(input_pitch) > 0.9:
+ input_pitch[input_pitch != 1] = 1
+ return input_pitch
+
+
+def plt_pitch(input_pitch):
+ input_pitch = input_pitch.astype(float)
+ input_pitch[input_pitch == 1] = np.nan
+ return input_pitch
+
+
+def f0_to_pitch(ff):
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
+ return f0_pitch
+
+
+def fill_a_to_b(a, b):
+ if len(a) < len(b):
+ for _ in range(0, len(b) - len(a)):
+ a.append(a[0])
+
+
+def mkdir(paths: list):
+ for path in paths:
+ if not os.path.exists(path):
+ os.mkdir(path)
+
+
+class VitsSvc(object):
+ def __init__(self):
+ self.device = torch.device(
+ "cuda" if torch.cuda.is_available() else "cpu")
+ self.SVCVITS = None
+ self.hps = None
+ self.speakers = None
+ self.hubert_soft = utils.get_hubert_model()
+
+ def set_device(self, device):
+ self.device = torch.device(device)
+ self.hubert_soft.to(self.device)
+ if self.SVCVITS != None:
+ self.SVCVITS.to(self.device)
+
+ def loadCheckpoint(self, path):
+ self.hps = utils.get_hparams_from_file(
+ f"checkpoints/{path}/config.json")
+ self.SVCVITS = SynthesizerTrn(
+ self.hps.data.filter_length // 2 + 1,
+ self.hps.train.segment_size // self.hps.data.hop_length,
+ **self.hps.model)
+ _ = utils.load_checkpoint(
+ f"checkpoints/{path}/model.pth", self.SVCVITS, None)
+ _ = self.SVCVITS.eval().to(self.device)
+ self.speakers = self.hps.spk
+
+ def get_units(self, source, sr):
+ source = source.unsqueeze(0).to(self.device)
+ with torch.inference_mode():
+ units = self.hubert_soft.units(source)
+ return units
+
+ def get_unit_pitch(self, in_path, tran):
+ source, sr = torchaudio.load(in_path)
+ source = torchaudio.functional.resample(source, sr, 16000)
+ if len(source.shape) == 2 and source.shape[1] >= 2:
+ source = torch.mean(source, dim=0).unsqueeze(0)
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
+ return soft, f0
+
+ def infer(self, speaker_id, tran, raw_path):
+ speaker_id = self.speakers[speaker_id]
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
+ stn_tst = torch.FloatTensor(soft)
+ with torch.no_grad():
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
+ x_tst = torch.repeat_interleave(
+ x_tst, repeats=2, dim=1).transpose(1, 2)
+ audio, _ = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[
+ 0, 0].data.float()
+ return audio, audio.shape[-1]
+
+ def inference(self, srcaudio, chara, tran, slice_db):
+ sampling_rate, audio = srcaudio
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(
+ audio, orig_sr=sampling_rate, target_sr=16000)
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
+ audio = []
+ for (slice_tag, data) in audio_data:
+ length = int(np.ceil(len(data) / audio_sr *
+ self.hps.data.sampling_rate))
+ raw_path = io.BytesIO()
+ soundfile.write(raw_path, data, audio_sr, format="wav")
+ raw_path.seek(0)
+ if slice_tag:
+ _audio = np.zeros(length)
+ else:
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
+ _audio = out_audio.cpu().numpy()
+ audio.extend(list(_audio))
+ audio = (np.array(audio) * 32768.0).astype('int16')
+ return (self.hps.data.sampling_rate, audio)
diff --git a/inference/slicer.py b/inference/slicer.py
new file mode 100644
index 0000000000000000000000000000000000000000..b05840bcf6bdced0b6e2adbecb1a1dd5b3dee462
--- /dev/null
+++ b/inference/slicer.py
@@ -0,0 +1,142 @@
+import librosa
+import torch
+import torchaudio
+
+
+class Slicer:
+ def __init__(self,
+ sr: int,
+ threshold: float = -40.,
+ min_length: int = 5000,
+ min_interval: int = 300,
+ hop_size: int = 20,
+ max_sil_kept: int = 5000):
+ if not min_length >= min_interval >= hop_size:
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
+ if not max_sil_kept >= hop_size:
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
+ min_interval = sr * min_interval / 1000
+ self.threshold = 10 ** (threshold / 20.)
+ self.hop_size = round(sr * hop_size / 1000)
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
+ self.min_interval = round(min_interval / self.hop_size)
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
+
+ def _apply_slice(self, waveform, begin, end):
+ if len(waveform.shape) > 1:
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
+ else:
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
+
+ # @timeit
+ def slice(self, waveform):
+ if len(waveform.shape) > 1:
+ samples = librosa.to_mono(waveform)
+ else:
+ samples = waveform
+ if samples.shape[0] <= self.min_length:
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
+ sil_tags = []
+ silence_start = None
+ clip_start = 0
+ for i, rms in enumerate(rms_list):
+ # Keep looping while frame is silent.
+ if rms < self.threshold:
+ # Record start of silent frames.
+ if silence_start is None:
+ silence_start = i
+ continue
+ # Keep looping while frame is not silent and silence start has not been recorded.
+ if silence_start is None:
+ continue
+ # Clear recorded silence start if interval is not enough or clip is too short
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
+ if not is_leading_silence and not need_slice_middle:
+ silence_start = None
+ continue
+ # Need slicing. Record the range of silent frames to be removed.
+ if i - silence_start <= self.max_sil_kept:
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
+ if silence_start == 0:
+ sil_tags.append((0, pos))
+ else:
+ sil_tags.append((pos, pos))
+ clip_start = pos
+ elif i - silence_start <= self.max_sil_kept * 2:
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
+ pos += i - self.max_sil_kept
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
+ if silence_start == 0:
+ sil_tags.append((0, pos_r))
+ clip_start = pos_r
+ else:
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
+ clip_start = max(pos_r, pos)
+ else:
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
+ if silence_start == 0:
+ sil_tags.append((0, pos_r))
+ else:
+ sil_tags.append((pos_l, pos_r))
+ clip_start = pos_r
+ silence_start = None
+ # Deal with trailing silence.
+ total_frames = rms_list.shape[0]
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
+ sil_tags.append((pos, total_frames + 1))
+ # Apply and return slices.
+ if len(sil_tags) == 0:
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
+ else:
+ chunks = []
+ # 第一段静音并非从头开始,补上有声片段
+ if sil_tags[0][0]:
+ chunks.append(
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
+ for i in range(0, len(sil_tags)):
+ # 标识有声片段(跳过第一段)
+ if i:
+ chunks.append({"slice": False,
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
+ # 标识所有静音片段
+ chunks.append({"slice": True,
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
+ # 最后一段静音并非结尾,补上结尾片段
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
+ chunk_dict = {}
+ for i in range(len(chunks)):
+ chunk_dict[str(i)] = chunks[i]
+ return chunk_dict
+
+
+def cut(audio_path, db_thresh=-30, min_len=5000):
+ audio, sr = librosa.load(audio_path, sr=None)
+ slicer = Slicer(
+ sr=sr,
+ threshold=db_thresh,
+ min_length=min_len
+ )
+ chunks = slicer.slice(audio)
+ return chunks
+
+
+def chunks2audio(audio_path, chunks):
+ chunks = dict(chunks)
+ audio, sr = torchaudio.load(audio_path)
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
+ audio = audio.cpu().numpy()[0]
+ result = []
+ for k, v in chunks.items():
+ tag = v["split_time"].split(",")
+ if tag[0] != tag[1]:
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
+ return result, sr
diff --git a/models.py b/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..4cfc5c4c9920cbd1a082f83e861faf86cdd41e74
--- /dev/null
+++ b/models.py
@@ -0,0 +1,420 @@
+import copy
+import math
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+import modules.attentions as attentions
+import modules.commons as commons
+import modules.modules as modules
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+
+import utils
+from modules.commons import init_weights, get_padding
+from vdecoder.hifigan.models import Generator
+from utils import f0_to_coarse
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ # print(x.shape,x_lengths.shape)
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+
+class TextEncoder(nn.Module):
+ def __init__(self,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ n_layers,
+ gin_channels=0,
+ filter_channels=None,
+ n_heads=None,
+ p_dropout=None):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+ self.f0_emb = nn.Embedding(256, hidden_channels)
+
+ self.enc_ = attentions.Encoder(
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout)
+
+ def forward(self, x, x_mask, f0=None, noice_scale=1):
+ x = x + self.f0_emb(f0).transpose(1,2)
+ x = self.enc_(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
+
+ return z, m, logs, x_mask
+
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2,3,5,7,11]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class SpeakerEncoder(torch.nn.Module):
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
+ super(SpeakerEncoder, self).__init__()
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
+ self.relu = nn.ReLU()
+
+ def forward(self, mels):
+ self.lstm.flatten_parameters()
+ _, (hidden, _) = self.lstm(mels)
+ embeds_raw = self.relu(self.linear(hidden[-1]))
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
+
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
+ mel_slices = []
+ for i in range(0, total_frames-partial_frames, partial_hop):
+ mel_range = torch.arange(i, i+partial_frames)
+ mel_slices.append(mel_range)
+
+ return mel_slices
+
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
+ mel_len = mel.size(1)
+ last_mel = mel[:,-partial_frames:]
+
+ if mel_len > partial_frames:
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
+ mels = list(mel[:,s] for s in mel_slices)
+ mels.append(last_mel)
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
+
+ with torch.no_grad():
+ partial_embeds = self(mels)
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
+ #embed = embed / torch.linalg.norm(embed, 2)
+ else:
+ with torch.no_grad():
+ embed = self(last_mel)
+
+ return embed
+
+class F0Decoder(nn.Module):
+ def __init__(self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ spk_channels=0):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.spk_channels = spk_channels
+
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
+ self.decoder = attentions.FFT(
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout)
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
+
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
+ x = torch.detach(x)
+ if (spk_emb is not None):
+ x = x + self.cond(spk_emb)
+ x += self.f0_prenet(norm_f0)
+ x = self.prenet(x) * x_mask
+ x = self.decoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x
+
+
+class SynthesizerTrn(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ ssl_dim,
+ n_speakers,
+ sampling_rate=44100,
+ **kwargs):
+
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ self.ssl_dim = ssl_dim
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
+
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
+
+ self.enc_p = TextEncoder(
+ inter_channels,
+ hidden_channels,
+ filter_channels=filter_channels,
+ n_heads=n_heads,
+ n_layers=n_layers,
+ kernel_size=kernel_size,
+ p_dropout=p_dropout
+ )
+ hps = {
+ "sampling_rate": sampling_rate,
+ "inter_channels": inter_channels,
+ "resblock": resblock,
+ "resblock_kernel_sizes": resblock_kernel_sizes,
+ "resblock_dilation_sizes": resblock_dilation_sizes,
+ "upsample_rates": upsample_rates,
+ "upsample_initial_channel": upsample_initial_channel,
+ "upsample_kernel_sizes": upsample_kernel_sizes,
+ "gin_channels": gin_channels,
+ }
+ self.dec = Generator(h=hps)
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
+ self.f0_decoder = F0Decoder(
+ 1,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ spk_channels=gin_channels
+ )
+ self.emb_uv = nn.Embedding(2, hidden_channels)
+
+ def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
+ g = self.emb_g(g).transpose(1,2)
+ # ssl prenet
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
+
+ # f0 predict
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
+
+ # encoder
+ z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
+ z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
+
+ # flow
+ z_p = self.flow(z, spec_mask, g=g)
+ z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
+
+ # nsf decoder
+ o = self.dec(z_slice, g=g, f0=pitch_slice)
+
+ return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
+
+ def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
+ g = self.emb_g(g).transpose(1,2)
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
+
+ if predict_f0:
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
+
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
+ o = self.dec(z * c_mask, g=g, f0=f0)
+ return o,f0
diff --git a/modules/F0Predictor/CrepeF0Predictor.py b/modules/F0Predictor/CrepeF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0052881b9b7b3aa373ebf69eb553815a564f610
--- /dev/null
+++ b/modules/F0Predictor/CrepeF0Predictor.py
@@ -0,0 +1,31 @@
+from modules.F0Predictor.F0Predictor import F0Predictor
+from modules.F0Predictor.crepe import CrepePitchExtractor
+import torch
+
+class CrepeF0Predictor(F0Predictor):
+ def __init__(self,hop_length=512,f0_min=50,f0_max=1100,device=None,sampling_rate=44100,threshold=0.05,model="full"):
+ self.F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=threshold,model=model)
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.device = device
+ self.threshold = threshold
+ self.sampling_rate = sampling_rate
+
+ def compute_f0(self,wav,p_len=None):
+ x = torch.FloatTensor(wav).to(self.device)
+ if p_len is None:
+ p_len = x.shape[0]//self.hop_length
+ else:
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
+ f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len)
+ return f0
+
+ def compute_f0_uv(self,wav,p_len=None):
+ x = torch.FloatTensor(wav).to(self.device)
+ if p_len is None:
+ p_len = x.shape[0]//self.hop_length
+ else:
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
+ f0,uv = self.F0Creper(x[None,:].float(),self.sampling_rate,pad_to=p_len)
+ return f0,uv
\ No newline at end of file
diff --git a/modules/F0Predictor/DioF0Predictor.py b/modules/F0Predictor/DioF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ab27de23cae4dbc282e30f84501afebd1a37518
--- /dev/null
+++ b/modules/F0Predictor/DioF0Predictor.py
@@ -0,0 +1,85 @@
+from modules.F0Predictor.F0Predictor import F0Predictor
+import pyworld
+import numpy as np
+
+class DioF0Predictor(F0Predictor):
+ def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self,f0):
+ '''
+ 对F0进行插值处理
+ '''
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:,0], vuv_vector[:,0]
+
+ def resize_f0(self,x, target_len):
+ source = np.array(x)
+ source[source<0.001] = np.nan
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
+ res = np.nan_to_num(target)
+ return res
+
+ def compute_f0(self,wav,p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0]//self.hop_length
+ f0, t = pyworld.dio(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
+
+ def compute_f0_uv(self,wav,p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0]//self.hop_length
+ f0, t = pyworld.dio(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
diff --git a/modules/F0Predictor/F0Predictor.py b/modules/F0Predictor/F0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..69d8a9bd28729e33d092a5af8e2ce544c1330c3b
--- /dev/null
+++ b/modules/F0Predictor/F0Predictor.py
@@ -0,0 +1,16 @@
+class F0Predictor(object):
+ def compute_f0(self,wav,p_len):
+ '''
+ input: wav:[signal_length]
+ p_len:int
+ output: f0:[signal_length//hop_length]
+ '''
+ pass
+
+ def compute_f0_uv(self,wav,p_len):
+ '''
+ input: wav:[signal_length]
+ p_len:int
+ output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
+ '''
+ pass
\ No newline at end of file
diff --git a/modules/F0Predictor/HarvestF0Predictor.py b/modules/F0Predictor/HarvestF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..122bdbb4c736feb4a8d974eca03df71aede76f69
--- /dev/null
+++ b/modules/F0Predictor/HarvestF0Predictor.py
@@ -0,0 +1,81 @@
+from modules.F0Predictor.F0Predictor import F0Predictor
+import pyworld
+import numpy as np
+
+class HarvestF0Predictor(F0Predictor):
+ def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self,f0):
+ '''
+ 对F0进行插值处理
+ '''
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:,0], vuv_vector[:,0]
+
+ def resize_f0(self,x, target_len):
+ source = np.array(x)
+ source[source<0.001] = np.nan
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
+ res = np.nan_to_num(target)
+ return res
+
+ def compute_f0(self,wav,p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0]//self.hop_length
+ f0, t = pyworld.harvest(
+ wav.astype(np.double),
+ fs=self.hop_length,
+ f0_ceil=self.f0_max,
+ f0_floor=self.f0_min,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
+
+ def compute_f0_uv(self,wav,p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0]//self.hop_length
+ f0, t = pyworld.harvest(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
diff --git a/modules/F0Predictor/PMF0Predictor.py b/modules/F0Predictor/PMF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccf4128436c5b7e5a3e720d4597bad0c622d0920
--- /dev/null
+++ b/modules/F0Predictor/PMF0Predictor.py
@@ -0,0 +1,83 @@
+from modules.F0Predictor.F0Predictor import F0Predictor
+import parselmouth
+import numpy as np
+
+class PMF0Predictor(F0Predictor):
+ def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+
+ def interpolate_f0(self,f0):
+ '''
+ 对F0进行插值处理
+ '''
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:,0], vuv_vector[:,0]
+
+ def compute_f0(self,wav,p_len=None):
+ x = wav
+ if p_len is None:
+ p_len = x.shape[0]//self.hop_length
+ else:
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
+ time_step = self.hop_length / self.sampling_rate * 1000
+ f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
+ time_step=time_step / 1000, voicing_threshold=0.6,
+ pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
+
+ pad_size=(p_len - len(f0) + 1) // 2
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
+ f0,uv = self.interpolate_f0(f0)
+ return f0
+
+ def compute_f0_uv(self,wav,p_len=None):
+ x = wav
+ if p_len is None:
+ p_len = x.shape[0]//self.hop_length
+ else:
+ assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
+ time_step = self.hop_length / self.sampling_rate * 1000
+ f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
+ time_step=time_step / 1000, voicing_threshold=0.6,
+ pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
+
+ pad_size=(p_len - len(f0) + 1) // 2
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
+ f0,uv = self.interpolate_f0(f0)
+ return f0,uv
diff --git a/modules/F0Predictor/__init__.py b/modules/F0Predictor/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/F0Predictor/crepe.py b/modules/F0Predictor/crepe.py
new file mode 100644
index 0000000000000000000000000000000000000000..c6fb45c79bcd306202a2c0282b3d73a8074ced5d
--- /dev/null
+++ b/modules/F0Predictor/crepe.py
@@ -0,0 +1,340 @@
+from typing import Optional,Union
+try:
+ from typing import Literal
+except Exception as e:
+ from typing_extensions import Literal
+import numpy as np
+import torch
+import torchcrepe
+from torch import nn
+from torch.nn import functional as F
+import scipy
+
+#from:https://github.com/fishaudio/fish-diffusion
+
+def repeat_expand(
+ content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
+):
+ """Repeat content to target length.
+ This is a wrapper of torch.nn.functional.interpolate.
+
+ Args:
+ content (torch.Tensor): tensor
+ target_len (int): target length
+ mode (str, optional): interpolation mode. Defaults to "nearest".
+
+ Returns:
+ torch.Tensor: tensor
+ """
+
+ ndim = content.ndim
+
+ if content.ndim == 1:
+ content = content[None, None]
+ elif content.ndim == 2:
+ content = content[None]
+
+ assert content.ndim == 3
+
+ is_np = isinstance(content, np.ndarray)
+ if is_np:
+ content = torch.from_numpy(content)
+
+ results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
+
+ if is_np:
+ results = results.numpy()
+
+ if ndim == 1:
+ return results[0, 0]
+ elif ndim == 2:
+ return results[0]
+
+
+class BasePitchExtractor:
+ def __init__(
+ self,
+ hop_length: int = 512,
+ f0_min: float = 50.0,
+ f0_max: float = 1100.0,
+ keep_zeros: bool = True,
+ ):
+ """Base pitch extractor.
+
+ Args:
+ hop_length (int, optional): Hop length. Defaults to 512.
+ f0_min (float, optional): Minimum f0. Defaults to 50.0.
+ f0_max (float, optional): Maximum f0. Defaults to 1100.0.
+ keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True.
+ """
+
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.keep_zeros = keep_zeros
+
+ def __call__(self, x, sampling_rate=44100, pad_to=None):
+ raise NotImplementedError("BasePitchExtractor is not callable.")
+
+ def post_process(self, x, sampling_rate, f0, pad_to):
+ if isinstance(f0, np.ndarray):
+ f0 = torch.from_numpy(f0).float().to(x.device)
+
+ if pad_to is None:
+ return f0
+
+ f0 = repeat_expand(f0, pad_to)
+
+ if self.keep_zeros:
+ return f0
+
+ vuv_vector = torch.zeros_like(f0)
+ vuv_vector[f0 > 0.0] = 1.0
+ vuv_vector[f0 <= 0.0] = 0.0
+
+ # 去掉0频率, 并线性插值
+ nzindex = torch.nonzero(f0).squeeze()
+ f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
+ time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
+ time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
+
+ if f0.shape[0] <= 0:
+ return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)
+
+ if f0.shape[0] == 1:
+ return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
+
+ # 大概可以用 torch 重写?
+ f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
+ vuv_vector = vuv_vector.cpu().numpy()
+ vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
+
+ return f0,vuv_vector
+
+
+class MaskedAvgPool1d(nn.Module):
+ def __init__(
+ self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
+ ):
+ """An implementation of mean pooling that supports masked values.
+
+ Args:
+ kernel_size (int): The size of the median pooling window.
+ stride (int, optional): The stride of the median pooling window. Defaults to None.
+ padding (int, optional): The padding of the median pooling window. Defaults to 0.
+ """
+
+ super(MaskedAvgPool1d, self).__init__()
+ self.kernel_size = kernel_size
+ self.stride = stride or kernel_size
+ self.padding = padding
+
+ def forward(self, x, mask=None):
+ ndim = x.dim()
+ if ndim == 2:
+ x = x.unsqueeze(1)
+
+ assert (
+ x.dim() == 3
+ ), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
+
+ # Apply the mask by setting masked elements to zero, or make NaNs zero
+ if mask is None:
+ mask = ~torch.isnan(x)
+
+ # Ensure mask has the same shape as the input tensor
+ assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
+
+ masked_x = torch.where(mask, x, torch.zeros_like(x))
+ # Create a ones kernel with the same number of channels as the input tensor
+ ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device)
+
+ # Perform sum pooling
+ sum_pooled = nn.functional.conv1d(
+ masked_x,
+ ones_kernel,
+ stride=self.stride,
+ padding=self.padding,
+ groups=x.size(1),
+ )
+
+ # Count the non-masked (valid) elements in each pooling window
+ valid_count = nn.functional.conv1d(
+ mask.float(),
+ ones_kernel,
+ stride=self.stride,
+ padding=self.padding,
+ groups=x.size(1),
+ )
+ valid_count = valid_count.clamp(min=1) # Avoid division by zero
+
+ # Perform masked average pooling
+ avg_pooled = sum_pooled / valid_count
+
+ # Fill zero values with NaNs
+ avg_pooled[avg_pooled == 0] = float("nan")
+
+ if ndim == 2:
+ return avg_pooled.squeeze(1)
+
+ return avg_pooled
+
+
+class MaskedMedianPool1d(nn.Module):
+ def __init__(
+ self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
+ ):
+ """An implementation of median pooling that supports masked values.
+
+ This implementation is inspired by the median pooling implementation in
+ https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598
+
+ Args:
+ kernel_size (int): The size of the median pooling window.
+ stride (int, optional): The stride of the median pooling window. Defaults to None.
+ padding (int, optional): The padding of the median pooling window. Defaults to 0.
+ """
+
+ super(MaskedMedianPool1d, self).__init__()
+ self.kernel_size = kernel_size
+ self.stride = stride or kernel_size
+ self.padding = padding
+
+ def forward(self, x, mask=None):
+ ndim = x.dim()
+ if ndim == 2:
+ x = x.unsqueeze(1)
+
+ assert (
+ x.dim() == 3
+ ), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
+
+ if mask is None:
+ mask = ~torch.isnan(x)
+
+ assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
+
+ masked_x = torch.where(mask, x, torch.zeros_like(x))
+
+ x = F.pad(masked_x, (self.padding, self.padding), mode="reflect")
+ mask = F.pad(
+ mask.float(), (self.padding, self.padding), mode="constant", value=0
+ )
+
+ x = x.unfold(2, self.kernel_size, self.stride)
+ mask = mask.unfold(2, self.kernel_size, self.stride)
+
+ x = x.contiguous().view(x.size()[:3] + (-1,))
+ mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device)
+
+ # Combine the mask with the input tensor
+ #x_masked = torch.where(mask.bool(), x, torch.fill_(torch.zeros_like(x),float("inf")))
+ x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device))
+
+ # Sort the masked tensor along the last dimension
+ x_sorted, _ = torch.sort(x_masked, dim=-1)
+
+ # Compute the count of non-masked (valid) values
+ valid_count = mask.sum(dim=-1)
+
+ # Calculate the index of the median value for each pooling window
+ median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0)
+
+ # Gather the median values using the calculated indices
+ median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1)
+
+ # Fill infinite values with NaNs
+ median_pooled[torch.isinf(median_pooled)] = float("nan")
+
+ if ndim == 2:
+ return median_pooled.squeeze(1)
+
+ return median_pooled
+
+
+class CrepePitchExtractor(BasePitchExtractor):
+ def __init__(
+ self,
+ hop_length: int = 512,
+ f0_min: float = 50.0,
+ f0_max: float = 1100.0,
+ threshold: float = 0.05,
+ keep_zeros: bool = False,
+ device = None,
+ model: Literal["full", "tiny"] = "full",
+ use_fast_filters: bool = True,
+ decoder="viterbi"
+ ):
+ super().__init__(hop_length, f0_min, f0_max, keep_zeros)
+ if decoder == "viterbi":
+ self.decoder = torchcrepe.decode.viterbi
+ elif decoder == "argmax":
+ self.decoder = torchcrepe.decode.argmax
+ elif decoder == "weighted_argmax":
+ self.decoder = torchcrepe.decode.weighted_argmax
+ else:
+ raise "Unknown decoder"
+ self.threshold = threshold
+ self.model = model
+ self.use_fast_filters = use_fast_filters
+ self.hop_length = hop_length
+ if device is None:
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+ else:
+ self.dev = torch.device(device)
+ if self.use_fast_filters:
+ self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device)
+ self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device)
+
+ def __call__(self, x, sampling_rate=44100, pad_to=None):
+ """Extract pitch using crepe.
+
+
+ Args:
+ x (torch.Tensor): Audio signal, shape (1, T).
+ sampling_rate (int, optional): Sampling rate. Defaults to 44100.
+ pad_to (int, optional): Pad to length. Defaults to None.
+
+ Returns:
+ torch.Tensor: Pitch, shape (T // hop_length,).
+ """
+
+ assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor."
+ assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels."
+
+ x = x.to(self.dev)
+ f0, pd = torchcrepe.predict(
+ x,
+ sampling_rate,
+ self.hop_length,
+ self.f0_min,
+ self.f0_max,
+ pad=True,
+ model=self.model,
+ batch_size=1024,
+ device=x.device,
+ return_periodicity=True,
+ decoder=self.decoder
+ )
+
+ # Filter, remove silence, set uv threshold, refer to the original warehouse readme
+ if self.use_fast_filters:
+ pd = self.median_filter(pd)
+ else:
+ pd = torchcrepe.filter.median(pd, 3)
+
+ pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
+ f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
+
+ if self.use_fast_filters:
+ f0 = self.mean_filter(f0)
+ else:
+ f0 = torchcrepe.filter.mean(f0, 3)
+
+ f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
+
+ if torch.all(f0 == 0):
+ rtn = f0.cpu().numpy() if pad_to==None else np.zeros(pad_to)
+ return rtn,rtn
+
+ return self.post_process(x, sampling_rate, f0, pad_to)
diff --git a/modules/__init__.py b/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/modules/attentions.py b/modules/attentions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9c11ca4a3acb86bf1abc04d9dcfa82a4ed4061f
--- /dev/null
+++ b/modules/attentions.py
@@ -0,0 +1,349 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+import modules.commons as commons
+import modules.modules as modules
+from modules.modules import LayerNorm
+
+
+class FFT(nn.Module):
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
+ proximal_bias=False, proximal_init=True, **kwargs):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
+ proximal_init=proximal_init))
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Encoder(nn.Module):
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert t_s == t_t, "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert t_s == t_t, "Local attention is only available for self-attention."
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/modules/commons.py b/modules/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..074888006392e956ce204d8368362dbb2cd4e304
--- /dev/null
+++ b/modules/commons.py
@@ -0,0 +1,188 @@
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+def slice_pitch_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, idx_str:idx_end]
+ return ret
+
+def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
+ return ret, ret_pitch, ids_str
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size*dilation - dilation)/2)
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def intersperse(lst, item):
+ result = [item] * (len(lst) * 2 + 1)
+ result[1::2] = lst
+ return result
+
+
+def kl_divergence(m_p, logs_p, m_q, logs_q):
+ """KL(P||Q)"""
+ kl = (logs_q - logs_p) - 0.5
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
+ return kl
+
+
+def rand_gumbel(shape):
+ """Sample from the Gumbel distribution, protect from overflows."""
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
+ return -torch.log(-torch.log(uniform_samples))
+
+
+def rand_gumbel_like(x):
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
+ return g
+
+
+def slice_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, :, idx_str:idx_end]
+ return ret
+
+
+def rand_slice_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def rand_spec_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def get_timing_signal_1d(
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
+ position = torch.arange(length, dtype=torch.float)
+ num_timescales = channels // 2
+ log_timescale_increment = (
+ math.log(float(max_timescale) / float(min_timescale)) /
+ (num_timescales - 1))
+ inv_timescales = min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
+ signal = signal.view(1, channels, length)
+ return signal
+
+
+def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return x + signal.to(dtype=x.dtype, device=x.device)
+
+
+def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
+
+
+def subsequent_mask(length):
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
+ return mask
+
+
+@torch.jit.script
+def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
+ n_channels_int = n_channels[0]
+ in_act = input_a + input_b
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
+ acts = t_act * s_act
+ return acts
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def shift_1d(x):
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
+ return x
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def generate_path(duration, mask):
+ """
+ duration: [b, 1, t_x]
+ mask: [b, 1, t_y, t_x]
+ """
+ device = duration.device
+
+ b, _, t_y, t_x = mask.shape
+ cum_duration = torch.cumsum(duration, -1)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path.unsqueeze(1).transpose(2,3) * mask
+ return path
+
+
+def clip_grad_value_(parameters, clip_value, norm_type=2):
+ if isinstance(parameters, torch.Tensor):
+ parameters = [parameters]
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
+ norm_type = float(norm_type)
+ if clip_value is not None:
+ clip_value = float(clip_value)
+
+ total_norm = 0
+ for p in parameters:
+ param_norm = p.grad.data.norm(norm_type)
+ total_norm += param_norm.item() ** norm_type
+ if clip_value is not None:
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
+ total_norm = total_norm ** (1. / norm_type)
+ return total_norm
diff --git a/modules/enhancer.py b/modules/enhancer.py
new file mode 100644
index 0000000000000000000000000000000000000000..37676311f7d8dc4ddc2a5244dedc27b2437e04f5
--- /dev/null
+++ b/modules/enhancer.py
@@ -0,0 +1,105 @@
+import numpy as np
+import torch
+import torch.nn.functional as F
+from vdecoder.nsf_hifigan.nvSTFT import STFT
+from vdecoder.nsf_hifigan.models import load_model
+from torchaudio.transforms import Resample
+
+class Enhancer:
+ def __init__(self, enhancer_type, enhancer_ckpt, device=None):
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+
+ if enhancer_type == 'nsf-hifigan':
+ self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device)
+ else:
+ raise ValueError(f" [x] Unknown enhancer: {enhancer_type}")
+
+ self.resample_kernel = {}
+ self.enhancer_sample_rate = self.enhancer.sample_rate()
+ self.enhancer_hop_size = self.enhancer.hop_size()
+
+ def enhance(self,
+ audio, # 1, T
+ sample_rate,
+ f0, # 1, n_frames, 1
+ hop_size,
+ adaptive_key = 0,
+ silence_front = 0
+ ):
+ # enhancer start time
+ start_frame = int(silence_front * sample_rate / hop_size)
+ real_silence_front = start_frame * hop_size / sample_rate
+ audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ]
+ f0 = f0[: , start_frame :, :]
+
+ # adaptive parameters
+ adaptive_factor = 2 ** ( -adaptive_key / 12)
+ adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100))
+ real_factor = self.enhancer_sample_rate / adaptive_sample_rate
+
+ # resample the ddsp output
+ if sample_rate == adaptive_sample_rate:
+ audio_res = audio
+ else:
+ key_str = str(sample_rate) + str(adaptive_sample_rate)
+ if key_str not in self.resample_kernel:
+ self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device)
+ audio_res = self.resample_kernel[key_str](audio)
+
+ n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1)
+
+ # resample f0
+ f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy()
+ f0_np *= real_factor
+ time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor
+ time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames)
+ f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1])
+ f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames
+
+ # enhance
+ enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res)
+
+ # resample the enhanced output
+ if adaptive_factor != 0:
+ key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate)
+ if key_str not in self.resample_kernel:
+ self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device)
+ enhanced_audio = self.resample_kernel[key_str](enhanced_audio)
+
+ # pad the silence frames
+ if start_frame > 0:
+ enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0))
+
+ return enhanced_audio, enhancer_sample_rate
+
+
+class NsfHifiGAN(torch.nn.Module):
+ def __init__(self, model_path, device=None):
+ super().__init__()
+ if device is None:
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+ self.device = device
+ print('| Load HifiGAN: ', model_path)
+ self.model, self.h = load_model(model_path, device=self.device)
+
+ def sample_rate(self):
+ return self.h.sampling_rate
+
+ def hop_size(self):
+ return self.h.hop_size
+
+ def forward(self, audio, f0):
+ stft = STFT(
+ self.h.sampling_rate,
+ self.h.num_mels,
+ self.h.n_fft,
+ self.h.win_size,
+ self.h.hop_size,
+ self.h.fmin,
+ self.h.fmax)
+ with torch.no_grad():
+ mel = stft.get_mel(audio)
+ enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1)
+ return enhanced_audio, self.h.sampling_rate
\ No newline at end of file
diff --git a/modules/losses.py b/modules/losses.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd21799eccde350c3aac0bdd661baf96ed220147
--- /dev/null
+++ b/modules/losses.py
@@ -0,0 +1,61 @@
+import torch
+from torch.nn import functional as F
+
+import modules.commons as commons
+
+
+def feature_loss(fmap_r, fmap_g):
+ loss = 0
+ for dr, dg in zip(fmap_r, fmap_g):
+ for rl, gl in zip(dr, dg):
+ rl = rl.float().detach()
+ gl = gl.float()
+ loss += torch.mean(torch.abs(rl - gl))
+
+ return loss * 2
+
+
+def discriminator_loss(disc_real_outputs, disc_generated_outputs):
+ loss = 0
+ r_losses = []
+ g_losses = []
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ dr = dr.float()
+ dg = dg.float()
+ r_loss = torch.mean((1-dr)**2)
+ g_loss = torch.mean(dg**2)
+ loss += (r_loss + g_loss)
+ r_losses.append(r_loss.item())
+ g_losses.append(g_loss.item())
+
+ return loss, r_losses, g_losses
+
+
+def generator_loss(disc_outputs):
+ loss = 0
+ gen_losses = []
+ for dg in disc_outputs:
+ dg = dg.float()
+ l = torch.mean((1-dg)**2)
+ gen_losses.append(l)
+ loss += l
+
+ return loss, gen_losses
+
+
+def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
+ """
+ z_p, logs_q: [b, h, t_t]
+ m_p, logs_p: [b, h, t_t]
+ """
+ z_p = z_p.float()
+ logs_q = logs_q.float()
+ m_p = m_p.float()
+ logs_p = logs_p.float()
+ z_mask = z_mask.float()
+ #print(logs_p)
+ kl = logs_p - logs_q - 0.5
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
+ kl = torch.sum(kl * z_mask)
+ l = kl / torch.sum(z_mask)
+ return l
diff --git a/modules/mel_processing.py b/modules/mel_processing.py
new file mode 100644
index 0000000000000000000000000000000000000000..99c5b35beb83f3b288af0fac5b49ebf2c69f062c
--- /dev/null
+++ b/modules/mel_processing.py
@@ -0,0 +1,112 @@
+import math
+import os
+import random
+import torch
+from torch import nn
+import torch.nn.functional as F
+import torch.utils.data
+import numpy as np
+import librosa
+import librosa.util as librosa_util
+from librosa.util import normalize, pad_center, tiny
+from scipy.signal import get_window
+from scipy.io.wavfile import read
+from librosa.filters import mel as librosa_mel_fn
+
+MAX_WAV_VALUE = 32768.0
+
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ """
+ PARAMS
+ ------
+ C: compression factor
+ """
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+
+def dynamic_range_decompression_torch(x, C=1):
+ """
+ PARAMS
+ ------
+ C: compression factor used to compress
+ """
+ return torch.exp(x) / C
+
+
+def spectral_normalize_torch(magnitudes):
+ output = dynamic_range_compression_torch(magnitudes)
+ return output
+
+
+def spectral_de_normalize_torch(magnitudes):
+ output = dynamic_range_decompression_torch(magnitudes)
+ return output
+
+
+mel_basis = {}
+hann_window = {}
+
+
+def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ global hann_window
+ dtype_device = str(y.dtype) + '_' + str(y.device)
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
+ if wnsize_dtype_device not in hann_window:
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
+
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
+
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
+ return spec
+
+
+def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
+ global mel_basis
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
+ if fmax_dtype_device not in mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
+ spec = spectral_normalize_torch(spec)
+ return spec
+
+
+def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ global mel_basis, hann_window
+ dtype_device = str(y.dtype) + '_' + str(y.device)
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
+ if fmax_dtype_device not in mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
+ if wnsize_dtype_device not in hann_window:
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
+
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
+
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
+
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
+ spec = spectral_normalize_torch(spec)
+
+ return spec
diff --git a/modules/modules.py b/modules/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..54290fd207b25e93831bd21005990ea137e6b50e
--- /dev/null
+++ b/modules/modules.py
@@ -0,0 +1,342 @@
+import copy
+import math
+import numpy as np
+import scipy
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm
+
+import modules.commons as commons
+from modules.commons import init_weights, get_padding
+
+
+LRELU_SLOPE = 0.1
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-5):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = nn.Parameter(torch.ones(channels))
+ self.beta = nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ x = x.transpose(1, -1)
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
+ return x.transpose(1, -1)
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+ assert n_layers > 1, "Number of layers should be larger than 0."
+
+ self.conv_layers = nn.ModuleList()
+ self.norm_layers = nn.ModuleList()
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = nn.Sequential(
+ nn.ReLU(),
+ nn.Dropout(p_dropout))
+ for _ in range(n_layers-1):
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DDSConv(nn.Module):
+ """
+ Dialted and Depth-Separable Convolution
+ """
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
+ super().__init__()
+ self.channels = channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.drop = nn.Dropout(p_dropout)
+ self.convs_sep = nn.ModuleList()
+ self.convs_1x1 = nn.ModuleList()
+ self.norms_1 = nn.ModuleList()
+ self.norms_2 = nn.ModuleList()
+ for i in range(n_layers):
+ dilation = kernel_size ** i
+ padding = (kernel_size * dilation - dilation) // 2
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
+ groups=channels, dilation=dilation, padding=padding
+ ))
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
+ self.norms_1.append(LayerNorm(channels))
+ self.norms_2.append(LayerNorm(channels))
+
+ def forward(self, x, x_mask, g=None):
+ if g is not None:
+ x = x + g
+ for i in range(self.n_layers):
+ y = self.convs_sep[i](x * x_mask)
+ y = self.norms_1[i](y)
+ y = F.gelu(y)
+ y = self.convs_1x1[i](y)
+ y = self.norms_2[i](y)
+ y = F.gelu(y)
+ y = self.drop(y)
+ x = x + y
+ return x * x_mask
+
+
+class WN(torch.nn.Module):
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
+ super(WN, self).__init__()
+ assert(kernel_size % 2 == 1)
+ self.hidden_channels =hidden_channels
+ self.kernel_size = kernel_size,
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.p_dropout = p_dropout
+
+ self.in_layers = torch.nn.ModuleList()
+ self.res_skip_layers = torch.nn.ModuleList()
+ self.drop = nn.Dropout(p_dropout)
+
+ if gin_channels != 0:
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
+
+ for i in range(n_layers):
+ dilation = dilation_rate ** i
+ padding = int((kernel_size * dilation - dilation) / 2)
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
+ dilation=dilation, padding=padding)
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
+ self.in_layers.append(in_layer)
+
+ # last one is not necessary
+ if i < n_layers - 1:
+ res_skip_channels = 2 * hidden_channels
+ else:
+ res_skip_channels = hidden_channels
+
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
+ self.res_skip_layers.append(res_skip_layer)
+
+ def forward(self, x, x_mask, g=None, **kwargs):
+ output = torch.zeros_like(x)
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
+
+ if g is not None:
+ g = self.cond_layer(g)
+
+ for i in range(self.n_layers):
+ x_in = self.in_layers[i](x)
+ if g is not None:
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
+ else:
+ g_l = torch.zeros_like(x_in)
+
+ acts = commons.fused_add_tanh_sigmoid_multiply(
+ x_in,
+ g_l,
+ n_channels_tensor)
+ acts = self.drop(acts)
+
+ res_skip_acts = self.res_skip_layers[i](acts)
+ if i < self.n_layers - 1:
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
+ x = (x + res_acts) * x_mask
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
+ else:
+ output = output + res_skip_acts
+ return output * x_mask
+
+ def remove_weight_norm(self):
+ if self.gin_channels != 0:
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
+ for l in self.in_layers:
+ torch.nn.utils.remove_weight_norm(l)
+ for l in self.res_skip_layers:
+ torch.nn.utils.remove_weight_norm(l)
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.convs1 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2])))
+ ])
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1)))
+ ])
+ self.convs2.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c2(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.convs = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1])))
+ ])
+ self.convs.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Log(nn.Module):
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
+ logdet = torch.sum(-y, [1, 2])
+ return y, logdet
+ else:
+ x = torch.exp(x) * x_mask
+ return x
+
+
+class Flip(nn.Module):
+ def forward(self, x, *args, reverse=False, **kwargs):
+ x = torch.flip(x, [1])
+ if not reverse:
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
+ return x, logdet
+ else:
+ return x
+
+
+class ElementwiseAffine(nn.Module):
+ def __init__(self, channels):
+ super().__init__()
+ self.channels = channels
+ self.m = nn.Parameter(torch.zeros(channels,1))
+ self.logs = nn.Parameter(torch.zeros(channels,1))
+
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = self.m + torch.exp(self.logs) * x
+ y = y * x_mask
+ logdet = torch.sum(self.logs * x_mask, [1,2])
+ return y, logdet
+ else:
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
+ return x
+
+
+class ResidualCouplingLayer(nn.Module):
+ def __init__(self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=0,
+ gin_channels=0,
+ mean_only=False):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1,2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f72dea47aa593589f47233a8351a402429a89954
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,26 @@
+ffmpeg-python
+Flask
+Flask_Cors
+gradio>=3.7.0
+numpy==1.23.0
+pyworld==0.2.5
+scipy==1.10.0
+SoundFile==0.12.1
+torch==1.13.1
+torchaudio==0.13.1
+torchcrepe
+tqdm
+scikit-maad
+praat-parselmouth
+onnx
+onnxsim
+onnxoptimizer
+fairseq==0.12.2
+librosa==0.9.1
+tensorboard
+tensorboardX
+transformers
+edge_tts
+pyyaml
+pynvml
+ffmpeg
\ No newline at end of file
diff --git a/utils.py b/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e3c1702d8160f8d348e8b07596a9d172da624eb
--- /dev/null
+++ b/utils.py
@@ -0,0 +1,446 @@
+import os
+import glob
+import re
+import sys
+import argparse
+import logging
+import json
+import subprocess
+import warnings
+import random
+import functools
+
+import librosa
+import numpy as np
+from scipy.io.wavfile import read
+import torch
+from torch.nn import functional as F
+from modules.commons import sequence_mask
+
+MATPLOTLIB_FLAG = False
+
+logging.basicConfig(stream=sys.stdout, level=logging.WARN)
+logger = logging
+
+f0_bin = 256
+f0_max = 1100.0
+f0_min = 50.0
+f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+
+def normalize_f0(f0, x_mask, uv, random_scale=True):
+ # calculate means based on x_mask
+ uv_sum = torch.sum(uv, dim=1, keepdim=True)
+ uv_sum[uv_sum == 0] = 9999
+ means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
+
+ if random_scale:
+ factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
+ else:
+ factor = torch.ones(f0.shape[0], 1).to(f0.device)
+ # normalize f0 based on means and factor
+ f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
+ if torch.isnan(f0_norm).any():
+ exit(0)
+ return f0_norm * x_mask
+
+def plot_data_to_numpy(x, y):
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(10, 2))
+ plt.plot(x)
+ plt.plot(y)
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
+
+
+def f0_to_coarse(f0):
+ is_torch = isinstance(f0, torch.Tensor)
+ f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
+
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
+ f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int)
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
+ return f0_coarse
+
+def get_content(cmodel, y):
+ with torch.no_grad():
+ c = cmodel.extract_features(y.squeeze(1))[0]
+ c = c.transpose(1, 2)
+ return c
+
+def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
+ if f0_predictor == "pm":
+ from modules.F0Predictor.PMF0Predictor import PMF0Predictor
+ f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
+ elif f0_predictor == "crepe":
+ from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor
+ f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"])
+ elif f0_predictor == "harvest":
+ from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
+ f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
+ elif f0_predictor == "dio":
+ from modules.F0Predictor.DioF0Predictor import DioF0Predictor
+ f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
+ else:
+ raise Exception("Unknown f0 predictor")
+ return f0_predictor_object
+
+def get_speech_encoder(speech_encoder,device=None,**kargs):
+ if speech_encoder == "vec768l12":
+ from vencoder.ContentVec768L12 import ContentVec768L12
+ speech_encoder_object = ContentVec768L12(device = device)
+ elif speech_encoder == "vec256l9":
+ from vencoder.ContentVec256L9 import ContentVec256L9
+ speech_encoder_object = ContentVec256L9(device = device)
+ elif speech_encoder == "vec256l9-onnx":
+ from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx
+ speech_encoder_object = ContentVec256L9(device = device)
+ elif speech_encoder == "vec256l12-onnx":
+ from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx
+ speech_encoder_object = ContentVec256L9(device = device)
+ elif speech_encoder == "vec768l9-onnx":
+ from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx
+ speech_encoder_object = ContentVec256L9(device = device)
+ elif speech_encoder == "vec768l12-onnx":
+ from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx
+ speech_encoder_object = ContentVec256L9(device = device)
+ elif speech_encoder == "hubertsoft-onnx":
+ from vencoder.HubertSoft_Onnx import HubertSoft_Onnx
+ speech_encoder_object = HubertSoft(device = device)
+ elif speech_encoder == "hubertsoft":
+ from vencoder.HubertSoft import HubertSoft
+ speech_encoder_object = HubertSoft(device = device)
+ elif speech_encoder == "whisper-ppg":
+ from vencoder.WhisperPPG import WhisperPPG
+ speech_encoder_object = WhisperPPG(device = device)
+ else:
+ raise Exception("Unknown speech encoder")
+ return speech_encoder_object
+
+def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
+ assert os.path.isfile(checkpoint_path)
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
+ iteration = checkpoint_dict['iteration']
+ learning_rate = checkpoint_dict['learning_rate']
+ if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
+ saved_state_dict = checkpoint_dict['model']
+ if hasattr(model, 'module'):
+ state_dict = model.module.state_dict()
+ else:
+ state_dict = model.state_dict()
+ new_state_dict = {}
+ for k, v in state_dict.items():
+ try:
+ # assert "dec" in k or "disc" in k
+ # print("load", k)
+ new_state_dict[k] = saved_state_dict[k]
+ assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
+ except:
+ print("error, %s is not in the checkpoint" % k)
+ logger.info("%s is not in the checkpoint" % k)
+ new_state_dict[k] = v
+ if hasattr(model, 'module'):
+ model.module.load_state_dict(new_state_dict)
+ else:
+ model.load_state_dict(new_state_dict)
+ print("load ")
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
+ checkpoint_path, iteration))
+ return model, optimizer, learning_rate, iteration
+
+
+def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
+ iteration, checkpoint_path))
+ if hasattr(model, 'module'):
+ state_dict = model.module.state_dict()
+ else:
+ state_dict = model.state_dict()
+ torch.save({'model': state_dict,
+ 'iteration': iteration,
+ 'optimizer': optimizer.state_dict(),
+ 'learning_rate': learning_rate}, checkpoint_path)
+
+def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
+ """Freeing up space by deleting saved ckpts
+
+ Arguments:
+ path_to_models -- Path to the model directory
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
+ sort_by_time -- True -> chronologically delete ckpts
+ False -> lexicographically delete ckpts
+ """
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
+ sort_key = time_key if sort_by_time else name_key
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
+ to_del = [os.path.join(path_to_models, fn) for fn in
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
+ del_routine = lambda x: [os.remove(x), del_info(x)]
+ rs = [del_routine(fn) for fn in to_del]
+
+def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
+ for k, v in scalars.items():
+ writer.add_scalar(k, v, global_step)
+ for k, v in histograms.items():
+ writer.add_histogram(k, v, global_step)
+ for k, v in images.items():
+ writer.add_image(k, v, global_step, dataformats='HWC')
+ for k, v in audios.items():
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
+
+
+def latest_checkpoint_path(dir_path, regex="G_*.pth"):
+ f_list = glob.glob(os.path.join(dir_path, regex))
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
+ x = f_list[-1]
+ print(x)
+ return x
+
+
+def plot_spectrogram_to_numpy(spectrogram):
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(10,2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
+ interpolation='none')
+ plt.colorbar(im, ax=ax)
+ plt.xlabel("Frames")
+ plt.ylabel("Channels")
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
+
+
+def plot_alignment_to_numpy(alignment, info=None):
+ global MATPLOTLIB_FLAG
+ if not MATPLOTLIB_FLAG:
+ import matplotlib
+ matplotlib.use("Agg")
+ MATPLOTLIB_FLAG = True
+ mpl_logger = logging.getLogger('matplotlib')
+ mpl_logger.setLevel(logging.WARNING)
+ import matplotlib.pylab as plt
+ import numpy as np
+
+ fig, ax = plt.subplots(figsize=(6, 4))
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
+ interpolation='none')
+ fig.colorbar(im, ax=ax)
+ xlabel = 'Decoder timestep'
+ if info is not None:
+ xlabel += '\n\n' + info
+ plt.xlabel(xlabel)
+ plt.ylabel('Encoder timestep')
+ plt.tight_layout()
+
+ fig.canvas.draw()
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ plt.close()
+ return data
+
+
+def load_wav_to_torch(full_path):
+ sampling_rate, data = read(full_path)
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
+
+
+def load_filepaths_and_text(filename, split="|"):
+ with open(filename, encoding='utf-8') as f:
+ filepaths_and_text = [line.strip().split(split) for line in f]
+ return filepaths_and_text
+
+
+def get_hparams(init=True):
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
+ help='JSON file for configuration')
+ parser.add_argument('-m', '--model', type=str, required=True,
+ help='Model name')
+
+ args = parser.parse_args()
+ model_dir = os.path.join("./logs", args.model)
+
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+
+ config_path = args.config
+ config_save_path = os.path.join(model_dir, "config.json")
+ if init:
+ with open(config_path, "r") as f:
+ data = f.read()
+ with open(config_save_path, "w") as f:
+ f.write(data)
+ else:
+ with open(config_save_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams = HParams(**config)
+ hparams.model_dir = model_dir
+ return hparams
+
+
+def get_hparams_from_dir(model_dir):
+ config_save_path = os.path.join(model_dir, "config.json")
+ with open(config_save_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+
+ hparams =HParams(**config)
+ hparams.model_dir = model_dir
+ return hparams
+
+
+def get_hparams_from_file(config_path):
+ with open(config_path, "r") as f:
+ data = f.read()
+ config = json.loads(data)
+ hparams =HParams(**config)
+ return hparams
+
+
+def check_git_hash(model_dir):
+ source_dir = os.path.dirname(os.path.realpath(__file__))
+ if not os.path.exists(os.path.join(source_dir, ".git")):
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
+ source_dir
+ ))
+ return
+
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
+
+ path = os.path.join(model_dir, "githash")
+ if os.path.exists(path):
+ saved_hash = open(path).read()
+ if saved_hash != cur_hash:
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
+ saved_hash[:8], cur_hash[:8]))
+ else:
+ open(path, "w").write(cur_hash)
+
+
+def get_logger(model_dir, filename="train.log"):
+ global logger
+ logger = logging.getLogger(os.path.basename(model_dir))
+ logger.setLevel(logging.DEBUG)
+
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+ h = logging.FileHandler(os.path.join(model_dir, filename))
+ h.setLevel(logging.DEBUG)
+ h.setFormatter(formatter)
+ logger.addHandler(h)
+ return logger
+
+
+def repeat_expand_2d(content, target_len):
+ # content : [h, t]
+
+ src_len = content.shape[-1]
+ target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
+ temp = torch.arange(src_len+1) * target_len / src_len
+ current_pos = 0
+ for i in range(target_len):
+ if i < temp[current_pos+1]:
+ target[:, i] = content[:, current_pos]
+ else:
+ current_pos += 1
+ target[:, i] = content[:, current_pos]
+
+ return target
+
+
+def mix_model(model_paths,mix_rate,mode):
+ mix_rate = torch.FloatTensor(mix_rate)/100
+ model_tem = torch.load(model_paths[0])
+ models = [torch.load(path)["model"] for path in model_paths]
+ if mode == 0:
+ mix_rate = F.softmax(mix_rate,dim=0)
+ for k in model_tem["model"].keys():
+ model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
+ for i,model in enumerate(models):
+ model_tem["model"][k] += model[k]*mix_rate[i]
+ torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
+ return os.path.join(os.path.curdir,"output.pth")
+
+class HParams():
+ def __init__(self, **kwargs):
+ for k, v in kwargs.items():
+ if type(v) == dict:
+ v = HParams(**v)
+ self[k] = v
+
+ def keys(self):
+ return self.__dict__.keys()
+
+ def items(self):
+ return self.__dict__.items()
+
+ def values(self):
+ return self.__dict__.values()
+
+ def __len__(self):
+ return len(self.__dict__)
+
+ def __getitem__(self, key):
+ return getattr(self, key)
+
+ def __setitem__(self, key, value):
+ return setattr(self, key, value)
+
+ def __contains__(self, key):
+ return key in self.__dict__
+
+ def __repr__(self):
+ return self.__dict__.__repr__()
+
+ def get(self,index):
+ return self.__dict__.get(index)
+
+class Volume_Extractor:
+ def __init__(self, hop_size = 512):
+ self.hop_size = hop_size
+
+ def extract(self, audio): # audio: 2d tensor array
+ if not isinstance(audio,torch.Tensor):
+ audio = torch.Tensor(audio)
+ n_frames = int(audio.size(-1) // self.hop_size)
+ audio2 = audio ** 2
+ audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
+ volume = torch.FloatTensor([torch.mean(audio2[:,int(n * self.hop_size) : int((n + 1) * self.hop_size)]) for n in range(n_frames)])
+ volume = torch.sqrt(volume)
+ return volume
\ No newline at end of file
diff --git a/vdecoder/__init__.py b/vdecoder/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/vdecoder/hifigan/env.py b/vdecoder/hifigan/env.py
new file mode 100644
index 0000000000000000000000000000000000000000..2bdbc95d4f7a8bad8fd4f5eef657e2b51d946056
--- /dev/null
+++ b/vdecoder/hifigan/env.py
@@ -0,0 +1,15 @@
+import os
+import shutil
+
+
+class AttrDict(dict):
+ def __init__(self, *args, **kwargs):
+ super(AttrDict, self).__init__(*args, **kwargs)
+ self.__dict__ = self
+
+
+def build_env(config, config_name, path):
+ t_path = os.path.join(path, config_name)
+ if config != t_path:
+ os.makedirs(path, exist_ok=True)
+ shutil.copyfile(config, os.path.join(path, config_name))
diff --git a/vdecoder/hifigan/models.py b/vdecoder/hifigan/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..9747301f350bb269e62601017fe4633ce271b27e
--- /dev/null
+++ b/vdecoder/hifigan/models.py
@@ -0,0 +1,503 @@
+import os
+import json
+from .env import AttrDict
+import numpy as np
+import torch
+import torch.nn.functional as F
+import torch.nn as nn
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from .utils import init_weights, get_padding
+
+LRELU_SLOPE = 0.1
+
+
+def load_model(model_path, device='cuda'):
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
+ with open(config_file) as f:
+ data = f.read()
+
+ global h
+ json_config = json.loads(data)
+ h = AttrDict(json_config)
+
+ generator = Generator(h).to(device)
+
+ cp_dict = torch.load(model_path)
+ generator.load_state_dict(cp_dict['generator'])
+ generator.eval()
+ generator.remove_weight_norm()
+ del cp_dict
+ return generator, h
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.h = h
+ self.convs1 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2])))
+ ])
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1)))
+ ])
+ self.convs2.apply(init_weights)
+
+ def forward(self, x):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ xt = c2(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.h = h
+ self.convs = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1])))
+ ])
+ self.convs.apply(init_weights)
+
+ def forward(self, x):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+def padDiff(x):
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
+
+class SineGen(torch.nn.Module):
+ """ Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(self, samp_rate, harmonic_num=0,
+ sine_amp=0.1, noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+ self.flag_for_pulse = flag_for_pulse
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
+ return uv
+
+ def _f02sine(self, f0_values):
+ """ f0_values: (batchsize, length, dim)
+ where dim indicates fundamental tone and overtones
+ """
+ # convert to F0 in rad. The interger part n can be ignored
+ # because 2 * np.pi * n doesn't affect phase
+ rad_values = (f0_values / self.sampling_rate) % 1
+
+ # initial phase noise (no noise for fundamental component)
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
+ device=f0_values.device)
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
+ if not self.flag_for_pulse:
+ # for normal case
+
+ # To prevent torch.cumsum numerical overflow,
+ # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
+ # Buffer tmp_over_one_idx indicates the time step to add -1.
+ # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
+ tmp_over_one = torch.cumsum(rad_values, 1) % 1
+ tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+
+ sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
+ * 2 * np.pi)
+ else:
+ # If necessary, make sure that the first time step of every
+ # voiced segments is sin(pi) or cos(0)
+ # This is used for pulse-train generation
+
+ # identify the last time step in unvoiced segments
+ uv = self._f02uv(f0_values)
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
+ uv_1[:, -1, :] = 1
+ u_loc = (uv < 1) * (uv_1 > 0)
+
+ # get the instantanouse phase
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
+ # different batch needs to be processed differently
+ for idx in range(f0_values.shape[0]):
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
+ # stores the accumulation of i.phase within
+ # each voiced segments
+ tmp_cumsum[idx, :, :] = 0
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
+
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
+ # within the previous voiced segment.
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
+
+ # get the sines
+ sines = torch.cos(i_phase * 2 * np.pi)
+ return sines
+
+ def forward(self, f0):
+ """ sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
+ device=f0.device)
+ # fundamental component
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
+
+ # generate sine waveforms
+ sine_waves = self._f02sine(fn) * self.sine_amp
+
+ # generate uv signal
+ # uv = torch.ones(f0.shape)
+ # uv = uv * (f0 > self.voiced_threshold)
+ uv = self._f02uv(f0)
+
+ # noise: for unvoiced should be similar to sine_amp
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
+ # . for voiced regions is self.noise_std
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+
+ # first: set the unvoiced part to 0 by uv
+ # then: additive noise
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """ SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
+ sine_amp, add_noise_std, voiced_threshod)
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x):
+ """
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ """
+ # source for harmonic branch
+ sine_wavs, uv, _ = self.l_sin_gen(x)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+
+ # source for noise branch, in the same shape as uv
+ noise = torch.randn_like(uv) * self.sine_amp / 3
+ return sine_merge, noise, uv
+
+
+class Generator(torch.nn.Module):
+ def __init__(self, h):
+ super(Generator, self).__init__()
+ self.h = h
+
+ self.num_kernels = len(h["resblock_kernel_sizes"])
+ self.num_upsamples = len(h["upsample_rates"])
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=h["sampling_rate"],
+ harmonic_num=8)
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
+ resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
+ c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
+ self.ups.append(weight_norm(
+ ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
+ k, u, padding=(k - u) // 2)))
+ if i + 1 < len(h["upsample_rates"]): #
+ stride_f0 = np.prod(h["upsample_rates"][i + 1:])
+ self.noise_convs.append(Conv1d(
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = h["upsample_initial_channel"] // (2 ** (i + 1))
+ for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
+ self.resblocks.append(resblock(h, ch, k, d))
+
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
+ self.ups.apply(init_weights)
+ self.conv_post.apply(init_weights)
+ self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
+
+ def forward(self, x, f0, g=None):
+ # print(1,x.shape,f0.shape,f0[:, None].shape)
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ # print(2,f0.shape)
+ har_source, noi_source, uv = self.m_source(f0)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ x = x + self.cond(g)
+ # print(124,x.shape,har_source.shape)
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ # print(3,x.shape)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ # print(4,x_source.shape,har_source.shape,x.shape)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ print('Removing weight norm...')
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+ remove_weight_norm(self.conv_pre)
+ remove_weight_norm(self.conv_post)
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, periods=None):
+ super(MultiPeriodDiscriminator, self).__init__()
+ self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
+ self.discriminators = nn.ModuleList()
+ for period in self.periods:
+ self.discriminators.append(DiscriminatorP(period))
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiScaleDiscriminator(torch.nn.Module):
+ def __init__(self):
+ super(MultiScaleDiscriminator, self).__init__()
+ self.discriminators = nn.ModuleList([
+ DiscriminatorS(use_spectral_norm=True),
+ DiscriminatorS(),
+ DiscriminatorS(),
+ ])
+ self.meanpools = nn.ModuleList([
+ AvgPool1d(4, 2, padding=2),
+ AvgPool1d(4, 2, padding=2)
+ ])
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ if i != 0:
+ y = self.meanpools[i - 1](y)
+ y_hat = self.meanpools[i - 1](y_hat)
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+def feature_loss(fmap_r, fmap_g):
+ loss = 0
+ for dr, dg in zip(fmap_r, fmap_g):
+ for rl, gl in zip(dr, dg):
+ loss += torch.mean(torch.abs(rl - gl))
+
+ return loss * 2
+
+
+def discriminator_loss(disc_real_outputs, disc_generated_outputs):
+ loss = 0
+ r_losses = []
+ g_losses = []
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ r_loss = torch.mean((1 - dr) ** 2)
+ g_loss = torch.mean(dg ** 2)
+ loss += (r_loss + g_loss)
+ r_losses.append(r_loss.item())
+ g_losses.append(g_loss.item())
+
+ return loss, r_losses, g_losses
+
+
+def generator_loss(disc_outputs):
+ loss = 0
+ gen_losses = []
+ for dg in disc_outputs:
+ l = torch.mean((1 - dg) ** 2)
+ gen_losses.append(l)
+ loss += l
+
+ return loss, gen_losses
diff --git a/vdecoder/hifigan/nvSTFT.py b/vdecoder/hifigan/nvSTFT.py
new file mode 100644
index 0000000000000000000000000000000000000000..88597d62a505715091f9ba62d38bf0a85a31b95a
--- /dev/null
+++ b/vdecoder/hifigan/nvSTFT.py
@@ -0,0 +1,111 @@
+import math
+import os
+os.environ["LRU_CACHE_CAPACITY"] = "3"
+import random
+import torch
+import torch.utils.data
+import numpy as np
+import librosa
+from librosa.util import normalize
+from librosa.filters import mel as librosa_mel_fn
+from scipy.io.wavfile import read
+import soundfile as sf
+
+def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
+ sampling_rate = None
+ try:
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
+ except Exception as ex:
+ print(f"'{full_path}' failed to load.\nException:")
+ print(ex)
+ if return_empty_on_exception:
+ return [], sampling_rate or target_sr or 32000
+ else:
+ raise Exception(ex)
+
+ if len(data.shape) > 1:
+ data = data[:, 0]
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
+
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
+ else: # if audio data is type fp32
+ max_mag = max(np.amax(data), -np.amin(data))
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
+
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
+
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
+ return [], sampling_rate or target_sr or 32000
+ if target_sr is not None and sampling_rate != target_sr:
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
+ sampling_rate = target_sr
+
+ return data, sampling_rate
+
+def dynamic_range_compression(x, C=1, clip_val=1e-5):
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
+
+def dynamic_range_decompression(x, C=1):
+ return np.exp(x) / C
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+def dynamic_range_decompression_torch(x, C=1):
+ return torch.exp(x) / C
+
+class STFT():
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
+ self.target_sr = sr
+
+ self.n_mels = n_mels
+ self.n_fft = n_fft
+ self.win_size = win_size
+ self.hop_length = hop_length
+ self.fmin = fmin
+ self.fmax = fmax
+ self.clip_val = clip_val
+ self.mel_basis = {}
+ self.hann_window = {}
+
+ def get_mel(self, y, center=False):
+ sampling_rate = self.target_sr
+ n_mels = self.n_mels
+ n_fft = self.n_fft
+ win_size = self.win_size
+ hop_length = self.hop_length
+ fmin = self.fmin
+ fmax = self.fmax
+ clip_val = self.clip_val
+
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ if fmax not in self.mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
+ self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
+ self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
+
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect')
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)],
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
+ # print(111,spec)
+ spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
+ # print(222,spec)
+ spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec)
+ # print(333,spec)
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
+ # print(444,spec)
+ return spec
+
+ def __call__(self, audiopath):
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
+ return spect
+
+stft = STFT()
diff --git a/vdecoder/hifigan/utils.py b/vdecoder/hifigan/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c93c996d3cc73c30d71c1fc47056e4230f35c0f
--- /dev/null
+++ b/vdecoder/hifigan/utils.py
@@ -0,0 +1,68 @@
+import glob
+import os
+import matplotlib
+import torch
+from torch.nn.utils import weight_norm
+# matplotlib.use("Agg")
+import matplotlib.pylab as plt
+
+
+def plot_spectrogram(spectrogram):
+ fig, ax = plt.subplots(figsize=(10, 2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
+ interpolation='none')
+ plt.colorbar(im, ax=ax)
+
+ fig.canvas.draw()
+ plt.close()
+
+ return fig
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def apply_weight_norm(m):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ weight_norm(m)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size*dilation - dilation)/2)
+
+
+def load_checkpoint(filepath, device):
+ assert os.path.isfile(filepath)
+ print("Loading '{}'".format(filepath))
+ checkpoint_dict = torch.load(filepath, map_location=device)
+ print("Complete.")
+ return checkpoint_dict
+
+
+def save_checkpoint(filepath, obj):
+ print("Saving checkpoint to {}".format(filepath))
+ torch.save(obj, filepath)
+ print("Complete.")
+
+
+def del_old_checkpoints(cp_dir, prefix, n_models=2):
+ pattern = os.path.join(cp_dir, prefix + '????????')
+ cp_list = glob.glob(pattern) # get checkpoint paths
+ cp_list = sorted(cp_list)# sort by iter
+ if len(cp_list) > n_models: # if more than n_models models are found
+ for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
+ open(cp, 'w').close()# empty file contents
+ os.unlink(cp)# delete file (move to trash when using Colab)
+
+
+def scan_checkpoint(cp_dir, prefix):
+ pattern = os.path.join(cp_dir, prefix + '????????')
+ cp_list = glob.glob(pattern)
+ if len(cp_list) == 0:
+ return None
+ return sorted(cp_list)[-1]
+
diff --git a/vdecoder/nsf_hifigan/env.py b/vdecoder/nsf_hifigan/env.py
new file mode 100644
index 0000000000000000000000000000000000000000..2bdbc95d4f7a8bad8fd4f5eef657e2b51d946056
--- /dev/null
+++ b/vdecoder/nsf_hifigan/env.py
@@ -0,0 +1,15 @@
+import os
+import shutil
+
+
+class AttrDict(dict):
+ def __init__(self, *args, **kwargs):
+ super(AttrDict, self).__init__(*args, **kwargs)
+ self.__dict__ = self
+
+
+def build_env(config, config_name, path):
+ t_path = os.path.join(path, config_name)
+ if config != t_path:
+ os.makedirs(path, exist_ok=True)
+ shutil.copyfile(config, os.path.join(path, config_name))
diff --git a/vdecoder/nsf_hifigan/models.py b/vdecoder/nsf_hifigan/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2c889ec2fbd215702298ba2b7c411c6f5630d80
--- /dev/null
+++ b/vdecoder/nsf_hifigan/models.py
@@ -0,0 +1,439 @@
+import os
+import json
+from .env import AttrDict
+import numpy as np
+import torch
+import torch.nn.functional as F
+import torch.nn as nn
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from .utils import init_weights, get_padding
+
+LRELU_SLOPE = 0.1
+
+
+def load_model(model_path, device='cuda'):
+ h = load_config(model_path)
+
+ generator = Generator(h).to(device)
+
+ cp_dict = torch.load(model_path, map_location=device)
+ generator.load_state_dict(cp_dict['generator'])
+ generator.eval()
+ generator.remove_weight_norm()
+ del cp_dict
+ return generator, h
+
+def load_config(model_path):
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
+ with open(config_file) as f:
+ data = f.read()
+
+ json_config = json.loads(data)
+ h = AttrDict(json_config)
+ return h
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.h = h
+ self.convs1 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2])))
+ ])
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
+ padding=get_padding(kernel_size, 1)))
+ ])
+ self.convs2.apply(init_weights)
+
+ def forward(self, x):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ xt = c2(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.h = h
+ self.convs = nn.ModuleList([
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]))),
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1])))
+ ])
+ self.convs.apply(init_weights)
+
+ def forward(self, x):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class SineGen(torch.nn.Module):
+ """ Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(self, samp_rate, harmonic_num=0,
+ sine_amp=0.1, noise_std=0.003,
+ voiced_threshold=0):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ @torch.no_grad()
+ def forward(self, f0, upp):
+ """ sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ f0 = f0.unsqueeze(-1)
+ fn = torch.multiply(f0, torch.arange(1, self.dim + 1, device=f0.device).reshape((1, 1, -1)))
+ rad_values = (fn / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(fn.shape[0], fn.shape[2], device=fn.device)
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ is_half = rad_values.dtype is not torch.float32
+ tmp_over_one = torch.cumsum(rad_values.double(), 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ if is_half:
+ tmp_over_one = tmp_over_one.half()
+ else:
+ tmp_over_one = tmp_over_one.float()
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1), scale_factor=upp,
+ mode='linear', align_corners=True
+ ).transpose(2, 1)
+ rad_values = F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ rad_values = rad_values.double()
+ cumsum_shift = cumsum_shift.double()
+ sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
+ if is_half:
+ sine_waves = sine_waves.half()
+ else:
+ sine_waves = sine_waves.float()
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """ SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
+ sine_amp, add_noise_std, voiced_threshod)
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge
+
+
+class Generator(torch.nn.Module):
+ def __init__(self, h):
+ super(Generator, self).__init__()
+ self.h = h
+ self.num_kernels = len(h.resblock_kernel_sizes)
+ self.num_upsamples = len(h.upsample_rates)
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=h.sampling_rate,
+ harmonic_num=8
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
+ resblock = ResBlock1 if h.resblock == '1' else ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
+ c_cur = h.upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(weight_norm(
+ ConvTranspose1d(h.upsample_initial_channel // (2 ** i), h.upsample_initial_channel // (2 ** (i + 1)),
+ k, u, padding=(k - u) // 2)))
+ if i + 1 < len(h.upsample_rates): #
+ stride_f0 = int(np.prod(h.upsample_rates[i + 1:]))
+ self.noise_convs.append(Conv1d(
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+ self.resblocks = nn.ModuleList()
+ ch = h.upsample_initial_channel
+ for i in range(len(self.ups)):
+ ch //= 2
+ for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
+ self.resblocks.append(resblock(h, ch, k, d))
+
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
+ self.ups.apply(init_weights)
+ self.conv_post.apply(init_weights)
+ self.upp = int(np.prod(h.upsample_rates))
+
+ def forward(self, x, f0):
+ har_source = self.m_source(f0, self.upp).transpose(1, 2)
+ x = self.conv_pre(x)
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ print('Removing weight norm...')
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+ remove_weight_norm(self.conv_pre)
+ remove_weight_norm(self.conv_post)
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
+ ])
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, periods=None):
+ super(MultiPeriodDiscriminator, self).__init__()
+ self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
+ self.discriminators = nn.ModuleList()
+ for period in self.periods:
+ self.discriminators.append(DiscriminatorP(period))
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList([
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ])
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiScaleDiscriminator(torch.nn.Module):
+ def __init__(self):
+ super(MultiScaleDiscriminator, self).__init__()
+ self.discriminators = nn.ModuleList([
+ DiscriminatorS(use_spectral_norm=True),
+ DiscriminatorS(),
+ DiscriminatorS(),
+ ])
+ self.meanpools = nn.ModuleList([
+ AvgPool1d(4, 2, padding=2),
+ AvgPool1d(4, 2, padding=2)
+ ])
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ if i != 0:
+ y = self.meanpools[i - 1](y)
+ y_hat = self.meanpools[i - 1](y_hat)
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+def feature_loss(fmap_r, fmap_g):
+ loss = 0
+ for dr, dg in zip(fmap_r, fmap_g):
+ for rl, gl in zip(dr, dg):
+ loss += torch.mean(torch.abs(rl - gl))
+
+ return loss * 2
+
+
+def discriminator_loss(disc_real_outputs, disc_generated_outputs):
+ loss = 0
+ r_losses = []
+ g_losses = []
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ r_loss = torch.mean((1 - dr) ** 2)
+ g_loss = torch.mean(dg ** 2)
+ loss += (r_loss + g_loss)
+ r_losses.append(r_loss.item())
+ g_losses.append(g_loss.item())
+
+ return loss, r_losses, g_losses
+
+
+def generator_loss(disc_outputs):
+ loss = 0
+ gen_losses = []
+ for dg in disc_outputs:
+ l = torch.mean((1 - dg) ** 2)
+ gen_losses.append(l)
+ loss += l
+
+ return loss, gen_losses
diff --git a/vdecoder/nsf_hifigan/nvSTFT.py b/vdecoder/nsf_hifigan/nvSTFT.py
new file mode 100644
index 0000000000000000000000000000000000000000..62bd5a008f81929054f036c81955d5d73377f772
--- /dev/null
+++ b/vdecoder/nsf_hifigan/nvSTFT.py
@@ -0,0 +1,134 @@
+import math
+import os
+os.environ["LRU_CACHE_CAPACITY"] = "3"
+import random
+import torch
+import torch.utils.data
+import numpy as np
+import librosa
+from librosa.util import normalize
+from librosa.filters import mel as librosa_mel_fn
+from scipy.io.wavfile import read
+import soundfile as sf
+import torch.nn.functional as F
+
+def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
+ sampling_rate = None
+ try:
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
+ except Exception as ex:
+ print(f"'{full_path}' failed to load.\nException:")
+ print(ex)
+ if return_empty_on_exception:
+ return [], sampling_rate or target_sr or 48000
+ else:
+ raise Exception(ex)
+
+ if len(data.shape) > 1:
+ data = data[:, 0]
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
+
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
+ else: # if audio data is type fp32
+ max_mag = max(np.amax(data), -np.amin(data))
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
+
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
+
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
+ return [], sampling_rate or target_sr or 48000
+ if target_sr is not None and sampling_rate != target_sr:
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
+ sampling_rate = target_sr
+
+ return data, sampling_rate
+
+def dynamic_range_compression(x, C=1, clip_val=1e-5):
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
+
+def dynamic_range_decompression(x, C=1):
+ return np.exp(x) / C
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+def dynamic_range_decompression_torch(x, C=1):
+ return torch.exp(x) / C
+
+class STFT():
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
+ self.target_sr = sr
+
+ self.n_mels = n_mels
+ self.n_fft = n_fft
+ self.win_size = win_size
+ self.hop_length = hop_length
+ self.fmin = fmin
+ self.fmax = fmax
+ self.clip_val = clip_val
+ self.mel_basis = {}
+ self.hann_window = {}
+
+ def get_mel(self, y, keyshift=0, speed=1, center=False):
+ sampling_rate = self.target_sr
+ n_mels = self.n_mels
+ n_fft = self.n_fft
+ win_size = self.win_size
+ hop_length = self.hop_length
+ fmin = self.fmin
+ fmax = self.fmax
+ clip_val = self.clip_val
+
+ factor = 2 ** (keyshift / 12)
+ n_fft_new = int(np.round(n_fft * factor))
+ win_size_new = int(np.round(win_size * factor))
+ hop_length_new = int(np.round(hop_length * speed))
+
+ if torch.min(y) < -1.:
+ print('min value is ', torch.min(y))
+ if torch.max(y) > 1.:
+ print('max value is ', torch.max(y))
+
+ mel_basis_key = str(fmax)+'_'+str(y.device)
+ if mel_basis_key not in self.mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
+ self.mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
+
+ keyshift_key = str(keyshift)+'_'+str(y.device)
+ if keyshift_key not in self.hann_window:
+ self.hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
+
+ pad_left = (win_size_new - hop_length_new) //2
+ pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
+ if pad_right < y.size(-1):
+ mode = 'reflect'
+ else:
+ mode = 'constant'
+ y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
+ y = y.squeeze(1)
+
+ spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=self.hann_window[keyshift_key],
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
+ # print(111,spec)
+ spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
+ if keyshift != 0:
+ size = n_fft // 2 + 1
+ resize = spec.size(1)
+ if resize < size:
+ spec = F.pad(spec, (0, 0, 0, size-resize))
+ spec = spec[:, :size, :] * win_size / win_size_new
+
+ # print(222,spec)
+ spec = torch.matmul(self.mel_basis[mel_basis_key], spec)
+ # print(333,spec)
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
+ # print(444,spec)
+ return spec
+
+ def __call__(self, audiopath):
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
+ return spect
+
+stft = STFT()
diff --git a/vdecoder/nsf_hifigan/utils.py b/vdecoder/nsf_hifigan/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..84bff024f4d2e2de194b2a88ee7bbe5f0d33f67c
--- /dev/null
+++ b/vdecoder/nsf_hifigan/utils.py
@@ -0,0 +1,68 @@
+import glob
+import os
+import matplotlib
+import torch
+from torch.nn.utils import weight_norm
+matplotlib.use("Agg")
+import matplotlib.pylab as plt
+
+
+def plot_spectrogram(spectrogram):
+ fig, ax = plt.subplots(figsize=(10, 2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
+ interpolation='none')
+ plt.colorbar(im, ax=ax)
+
+ fig.canvas.draw()
+ plt.close()
+
+ return fig
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def apply_weight_norm(m):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ weight_norm(m)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size*dilation - dilation)/2)
+
+
+def load_checkpoint(filepath, device):
+ assert os.path.isfile(filepath)
+ print("Loading '{}'".format(filepath))
+ checkpoint_dict = torch.load(filepath, map_location=device)
+ print("Complete.")
+ return checkpoint_dict
+
+
+def save_checkpoint(filepath, obj):
+ print("Saving checkpoint to {}".format(filepath))
+ torch.save(obj, filepath)
+ print("Complete.")
+
+
+def del_old_checkpoints(cp_dir, prefix, n_models=2):
+ pattern = os.path.join(cp_dir, prefix + '????????')
+ cp_list = glob.glob(pattern) # get checkpoint paths
+ cp_list = sorted(cp_list)# sort by iter
+ if len(cp_list) > n_models: # if more than n_models models are found
+ for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
+ open(cp, 'w').close()# empty file contents
+ os.unlink(cp)# delete file (move to trash when using Colab)
+
+
+def scan_checkpoint(cp_dir, prefix):
+ pattern = os.path.join(cp_dir, prefix + '????????')
+ cp_list = glob.glob(pattern)
+ if len(cp_list) == 0:
+ return None
+ return sorted(cp_list)[-1]
+