# Imports import numpy as np from transformers import pipeline import streamlit as st import torch # Detect device automatically device = 0 if torch.cuda.is_available() else -1 tokenizer_model="distilbert-base-uncased-finetuned-sst-2-english" dataset="imdb" seed = 42 ### Load the model ------------------------------- print(f"Using {tokenizer_model} model previously trained on dataset {dataset}") model_name = "FrancescoConte/FC_finetuning-sentiment-model-3000-samples" # Define the final sentiment analysis model sentiment_model = pipeline(model=model_name, task="sentiment-analysis") ### Use the model -------------------- #try_text=["I love this move", "This movie sucks!"] #print(sentiment_model(try_text)) ### Put it on streamlit ------------------- st.title("Sentiment Analysis App") text = st.text_area("Enter text for sentiment analysis:") if st.button("Analyze"): with st.spinner("Running inference..."): result = sentiment_model(text)[0] st.success(f"**Label:** {result['label']}\n\n**Confidence:** {result['score']:.5f}")