from pathlib import Path import streamlit as st from dotenv import load_dotenv from langchain.chains import LLMChain from langchain.prompts import PromptTemplate load_dotenv() import os from langchain.chat_models import ChatOpenAI from langchain.embeddings.openai import OpenAIEmbeddings from data import load_db from names import DATASET_ID, MODEL_ID import json @st.cache_resource def init(): # embeddings = OpenAIEmbeddings(model=MODEL_ID) # dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}" # db = load_db( # dataset_path, # embedding_function=embeddings, # token=os.environ["ACTIVELOOP_TOKEN"], # org_id=os.environ["ACTIVELOOP_ORG_ID"], # read_only=True, # ) with open("/home/zuppif/Documents/Work/ActiveLoop/ai-shazam/data/lyrics_with_spotify_url_and_summary.json", "r") as f: songs = json.load(f) prompt = PromptTemplate( input_variables=["songs", "user_input"], template=Path("prompts/bot_with_summary.prompt").read_text(), ) llm = ChatOpenAI(temperature=0.7) chain = LLMChain(llm=llm, prompt=prompt) return chain, songs, json.dumps(songs) chain, songs, songs_json = init() st.title("Disney song for you") text_input = st.text_input( label="How are you feeling today?", placeholder="I am ready to rock and rool!", ) clicked = st.button("Click me") placeholder_emotions = st.empty() placeholder = st.empty() def get_emotions(user_input): song_name = chain.run(songs=songs_json, user_input=user_input) song_name.replace('\'', '') print(f"Song: {song_name}") song = songs[song_name.lower()] # matches = db.similarity_search_with_score(emotions, distance_metric="cos") # print(matches) # doc, score = matches[0] iframes_html = "" # with placeholder_emotions: # st.write(emotions) with placeholder: embed_url = song["embed_url"] iframe_html = f'' st.components.v1.html(f"