from pathlib import Path import streamlit as st from dotenv import load_dotenv from langchain.chains import LLMChain from langchain.prompts import PromptTemplate load_dotenv() import os from langchain.chat_models import ChatOpenAI from langchain.embeddings.openai import OpenAIEmbeddings from data import load_db from names import DATASET_ID, MODEL_ID @st.cache_resource def init(): embeddings = OpenAIEmbeddings(model=MODEL_ID) dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}" db = load_db( dataset_path, embedding_function=embeddings, token=os.environ["ACTIVELOOP_TOKEN"], org_id=os.environ["ACTIVELOOP_ORG_ID"], read_only=True, ) prompt = PromptTemplate( input_variables=["content"], template=Path("prompts/bot.prompt").read_text(), ) llm = ChatOpenAI(temperature=0.7) chain = LLMChain(llm=llm, prompt=prompt) return db, chain db, chain = init() st.title("Disney song for you") text_input = st.text_input( label="How are you feeling today?", placeholder="I am ready to rock and rool!", ) clicked = st.button("Click me") placeholder_emotions = st.empty() placeholder = st.empty() def get_emotions(user_input): emotions = chain.run(content=user_input) print(f"Emotions: {emotions}") matches = db.similarity_search_with_score(emotions, distance_metric="cos") print(matches) doc, score = matches[0] iframes_html = "" with placeholder_emotions: st.write(emotions) with placeholder: embed_url = doc.metadata["embed_url"] iframe_html = f'' st.components.v1.html(f"