import streamlit as st import pandas as pd from transformers import pipeline # Load translation and summarization pipelines translator = pipeline("translation_ru_to_en", model="Helsinki-NLP/opus-mt-ru-en") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Function to translate and summarize text def translate_and_summarize(text): translated_text = translator(text)[0]['translation_text'] summary = summarizer(translated_text, max_length=140, min_length=110, do_sample=False)[0]['summary_text'] return summary # Streamlit interface def main(): st.title("CSV Translator and Summarizer") # File uploader uploaded_file = st.file_uploader("Choose a CSV file", type="csv") if uploaded_file is not None: # Read data data = pd.read_csv(uploaded_file) # Check if 'Description' column exists if 'Description' in data.columns: # Apply translation and summarization data['Summary'] = data['Description'].apply(translate_and_summarize) # Display data in a table st.write(data[['ID', 'Title', 'Summary']]) else: st.error("Uploaded CSV does not contain 'Description' column.") if __name__ == "__main__": main()