import torch import torch.nn.functional as F import os import argparse import numpy as np from PIL import Image from tokenizer.tokenizer_image.vq_model import VQ_models from dataset.augmentation import center_crop_arr def main(args): # Setup PyTorch: torch.manual_seed(args.seed) torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" # create and load model model = VQ_models[args.vq_model]( codebook_size=args.codebook_size, codebook_embed_dim=args.codebook_embed_dim) model.to(device) model.eval() checkpoint = torch.load(args.vq_ckpt, map_location="cpu") if "ema" in checkpoint: # ema model_weight = checkpoint["ema"] elif "model" in checkpoint: # ddp model_weight = checkpoint["model"] elif "state_dict" in checkpoint: model_weight = checkpoint["state_dict"] else: raise Exception("please check model weight") model.load_state_dict(model_weight) del checkpoint # output dir os.makedirs(args.output_dir, exist_ok=True) out_path = args.image_path.replace('.jpg', '_{}.jpg'.format(args.suffix)) out_path = out_path.replace('.jpeg', '_{}.jpeg'.format(args.suffix)) out_path = out_path.replace('.png', '_{}.png'.format(args.suffix)) out_filename = out_path.split('/')[-1] out_path = os.path.join(args.output_dir, out_filename) # load image pil_image = Image.open(args.image_path).convert("RGB") img = center_crop_arr(pil_image, args.image_size) # # preprocess # size_org = img.size # img = img.resize((input_size, input_size)) img = np.array(img) / 255. x = 2.0 * img - 1.0 # x value is between [-1, 1] x = torch.tensor(x) x = x.unsqueeze(dim=0) x = torch.einsum('nhwc->nchw', x) x_input = x.float().to("cuda") # inference with torch.no_grad(): latent, _, [_, _, indices] = model.encode(x_input) output = model.decode_code(indices, latent.shape) # output value is between [-1, 1] # postprocess output = F.interpolate(output, size=[args.image_size, args.image_size], mode='bicubic').permute(0, 2, 3, 1)[0] sample = torch.clamp(127.5 * output + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy() # save Image.fromarray(sample).save(out_path) print("Reconstructed image is saved to {}".format(out_path)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--image-path", type=str, default="assets/example.jpg") parser.add_argument("--output-dir", type=str, default="output_vq_demo") parser.add_argument("--suffix", type=str, default="tokenizer_image") parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") parser.add_argument("--image-size", type=int, choices=[256, 384, 448, 512, 1024], default=512) parser.add_argument("--seed", type=int, default=0) args = parser.parse_args() main(args)