# Modified from: # taming-transformers: https://github.com/CompVis/taming-transformers # stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py # maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py import functools import math import torch import torch.nn as nn try: from kornia.filters import filter2d except: pass ################################################################################# # PatchGAN # ################################################################################# class PatchGANDiscriminator(nn.Module): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(PatchGANDiscriminator, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [ nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.main = nn.Sequential(*sequence) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Conv2d): nn.init.normal_(module.weight.data, 0.0, 0.02) elif isinstance(module, nn.BatchNorm2d): nn.init.normal_(module.weight.data, 1.0, 0.02) nn.init.constant_(module.bias.data, 0) def forward(self, input): """Standard forward.""" return self.main(input) class ActNorm(nn.Module): def __init__(self, num_features, logdet=False, affine=True, allow_reverse_init=False): assert affine super().__init__() self.logdet = logdet self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) self.allow_reverse_init = allow_reverse_init self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) def initialize(self, input): with torch.no_grad(): flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) mean = ( flatten.mean(1) .unsqueeze(1) .unsqueeze(2) .unsqueeze(3) .permute(1, 0, 2, 3) ) std = ( flatten.std(1) .unsqueeze(1) .unsqueeze(2) .unsqueeze(3) .permute(1, 0, 2, 3) ) self.loc.data.copy_(-mean) self.scale.data.copy_(1 / (std + 1e-6)) def forward(self, input, reverse=False): if reverse: return self.reverse(input) if len(input.shape) == 2: input = input[:,:,None,None] squeeze = True else: squeeze = False _, _, height, width = input.shape if self.training and self.initialized.item() == 0: self.initialize(input) self.initialized.fill_(1) h = self.scale * (input + self.loc) if squeeze: h = h.squeeze(-1).squeeze(-1) if self.logdet: log_abs = torch.log(torch.abs(self.scale)) logdet = height*width*torch.sum(log_abs) logdet = logdet * torch.ones(input.shape[0]).to(input) return h, logdet return h def reverse(self, output): if self.training and self.initialized.item() == 0: if not self.allow_reverse_init: raise RuntimeError( "Initializing ActNorm in reverse direction is " "disabled by default. Use allow_reverse_init=True to enable." ) else: self.initialize(output) self.initialized.fill_(1) if len(output.shape) == 2: output = output[:,:,None,None] squeeze = True else: squeeze = False h = output / self.scale - self.loc if squeeze: h = h.squeeze(-1).squeeze(-1) return h ################################################################################# # StyleGAN # ################################################################################# class StyleGANDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256): super().__init__() channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } log_size = int(math.log(image_size, 2)) in_channel = channels[image_size] blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] blocks.append(DiscriminatorBlock(in_channel, out_channel)) in_channel = out_channel self.blocks = nn.ModuleList(blocks) self.final_conv = nn.Sequential( nn.Conv2d(in_channel, channels[4], 3, padding=1), leaky_relu(), ) self.final_linear = nn.Sequential( nn.Linear(channels[4] * 4 * 4, channels[4]), leaky_relu(), nn.Linear(channels[4], 1) ) def forward(self, x): for block in self.blocks: x = block(x) x = self.final_conv(x) x = x.view(x.shape[0], -1) x = self.final_linear(x) return x class DiscriminatorBlock(nn.Module): def __init__(self, input_channels, filters, downsample=True): super().__init__() self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1)) self.net = nn.Sequential( nn.Conv2d(input_channels, filters, 3, padding=1), leaky_relu(), nn.Conv2d(filters, filters, 3, padding=1), leaky_relu() ) self.downsample = nn.Sequential( Blur(), nn.Conv2d(filters, filters, 3, padding = 1, stride = 2) ) if downsample else None def forward(self, x): res = self.conv_res(x) x = self.net(x) if exists(self.downsample): x = self.downsample(x) x = (x + res) * (1 / math.sqrt(2)) return x class Blur(nn.Module): def __init__(self): super().__init__() f = torch.Tensor([1, 2, 1]) self.register_buffer('f', f) def forward(self, x): f = self.f f = f[None, None, :] * f [None, :, None] return filter2d(x, f, normalized=True) def leaky_relu(p=0.2): return nn.LeakyReLU(p, inplace=True) def exists(val): return val is not None