import time import argparse import torch from torchvision.utils import save_image from tokenizer.tokenizer_image.vq_model import VQ_models from serve.gpt_model import GPT_models from serve.llm import LLM from vllm import SamplingParams def main(args): # Setup PyTorch: torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" # create and load model vq_model = VQ_models[args.vq_model]( codebook_size=args.codebook_size, codebook_embed_dim=args.codebook_embed_dim) vq_model.to(device) vq_model.eval() checkpoint = torch.load(args.vq_ckpt, map_location="cpu") vq_model.load_state_dict(checkpoint["model"]) del checkpoint print(f"image tokenizer is loaded") # Labels to condition the model with (feel free to change): class_labels = [207, 360, 387, 974, 88, 979, 417, 279] latent_size = args.image_size // args.downsample_size qzshape = [len(class_labels), args.codebook_embed_dim, latent_size, latent_size] prompt_token_ids = [[cind] for cind in class_labels] if args.cfg_scale > 1.0: prompt_token_ids.extend([[args.num_classes] for _ in range(len(prompt_token_ids))]) # Create an LLM. llm = LLM( args=args, model='autoregressive/serve/fake_json/{}.json'.format(args.gpt_model), gpu_memory_utilization=0.9, skip_tokenizer_init=True) print(f"gpt model is loaded") # Create a sampling params object. sampling_params = SamplingParams( temperature=args.temperature, top_p=args.top_p, top_k=args.top_k, max_tokens=latent_size ** 2) # Generate texts from the prompts. The output is a list of RequestOutput objects # that contain the prompt, generated text, and other information. t1 = time.time() outputs = llm.generate( prompt_token_ids=prompt_token_ids, sampling_params=sampling_params, use_tqdm=False) sampling_time = time.time() - t1 print(f"gpt sampling takes about {sampling_time:.2f} seconds.") # decode to image index_sample = torch.tensor([output.outputs[0].token_ids for output in outputs], device=device) if args.cfg_scale > 1.0: index_sample = index_sample[:len(class_labels)] t2 = time.time() samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1] decoder_time = time.time() - t2 print(f"decoder takes about {decoder_time:.2f} seconds.") # Save and display images: save_image(samples, "sample_{}.png".format(args.gpt_type), nrow=4, normalize=True, value_range=(-1, 1)) print(f"image is saved to sample_{args.gpt_type}.png") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B") parser.add_argument("--gpt-ckpt", type=str, required=True, help="ckpt path for gpt model") parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional") parser.add_argument("--from-fsdp", action='store_true') parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input") parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) parser.add_argument("--compile", action='store_true', default=False) parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") parser.add_argument("--vq-ckpt", type=str, required=True, help="ckpt path for vq model") parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384) parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) parser.add_argument("--num-classes", type=int, default=1000) parser.add_argument("--cfg-scale", type=float, default=4.0) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with") parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") args = parser.parse_args() main(args)