import numpy as np from sklearn.metrics import (accuracy_score, classification_report, confusion_matrix, f1_score, precision_score, recall_score, roc_auc_score) def get_confusionmatrix_fnd(preds, labels): # label_predicted = np.argmax(preds, axis=1) label_predicted = preds print (accuracy_score(labels, label_predicted)) print(classification_report(labels, label_predicted, labels=[0.0, 1.0], target_names=['real', 'fake'],digits=4)) print (confusion_matrix(labels, label_predicted, labels=[0,1])) def metrics(y_true, y_pred): metrics = {} metrics['auc'] = roc_auc_score(y_true, y_pred, average='macro') y_pred = np.around(np.array(y_pred)).astype(int) metrics['f1'] = f1_score(y_true, y_pred, average='macro') metrics['recall'] = recall_score(y_true, y_pred, average='macro') metrics['precision'] = precision_score(y_true, y_pred, average='macro') metrics['acc'] = accuracy_score(y_true, y_pred) return metrics