from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks # ./FakeVD/Models/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/ # damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch class wav2text: def __init__(self) -> None: self.model = pipeline('auto-speech-recognition', './FakeVD/Models/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/', device="cpu") def work(self, wav_path): return self.model(wav_path,) if __name__ == "__main__": model = wav2text() result = model.work('./FakeVD/dataset/videos_1/douyin_6671891732524829965.mp4') print(result)