import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import AvgPool1d from torch.nn import Conv1d from torch.nn import Conv2d from torch.nn import ConvTranspose1d from torch.nn.utils import remove_weight_norm from torch.nn.utils import spectral_norm from torch.nn.utils import weight_norm from Preprocessing.Codec.utils import get_padding from Preprocessing.Codec.utils import init_weights LRELU_SLOPE = 0.1 class ResBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.h = h self.convs = nn.ModuleList([ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(torch.nn.Module): def __init__(self, h): super(Generator, self).__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm( Conv1d(512, h.upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if h.resblock == '1' else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( h.upsample_initial_channel // (2 ** i), h.upsample_initial_channel // (2 ** (i + 1)), k, u, # padding=(u//2 + u%2), padding=(k - u) // 2, # output_padding=u%2 ))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate( zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x, LRELU_SLOPE) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): # print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm is False else spectral_norm self.convs = nn.ModuleList([ norm_f( Conv2d( 1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f( Conv2d( 32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f( Conv2d( 128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f( Conv2d( 512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm is False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ]) self.meanpools = nn.ModuleList( [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_hat = self.meanpools[i - 1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss * 2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1 - dr) ** 2) g_loss = torch.mean(dg ** 2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1 - dg) ** 2) gen_losses.append(l) loss += l return loss, gen_losses class Encoder(torch.nn.Module): def __init__(self, h): super(Encoder, self).__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm(Conv1d(1, 32, 7, 1, padding=3)) self.normalize = nn.ModuleList() resblock = ResBlock1 if h.resblock == '1' else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate( list( reversed( list(zip(h.upsample_rates, h.upsample_kernel_sizes))))): self.ups.append( weight_norm( Conv1d( 32 * (2 ** i), 32 * (2 ** (i + 1)), k, u, padding=((k - u) // 2) # padding=(u//2 + u%2) ))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = 32 * (2 ** (i + 1)) for j, (k, d) in enumerate( zip( list(reversed(h.resblock_kernel_sizes)), list(reversed(h.resblock_dilation_sizes)))): self.resblocks.append(resblock(h, ch, k, d)) self.normalize.append( torch.nn.GroupNorm(ch // 16, ch, eps=1e-6, affine=True)) self.conv_post = Conv1d(512, 512, 3, 1, padding=1) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) xs = self.normalize[i * self.num_kernels + j](xs) else: xs += self.resblocks[i * self.num_kernels + j](x) xs = self.normalize[i * self.num_kernels + j](xs) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) class Quantizer_module(torch.nn.Module): def __init__(self, n_e, e_dim): super(Quantizer_module, self).__init__() self.embedding = nn.Embedding(n_e, e_dim) self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) def forward(self, x): # compute Euclidean distance d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \ - 2 * torch.matmul(x, self.embedding.weight.T) min_indicies = torch.argmin(d, 1) z_q = self.embedding(min_indicies) return z_q, min_indicies class Quantizer(torch.nn.Module): def __init__(self, h): super(Quantizer, self).__init__() assert 512 % h.n_code_groups == 0 self.quantizer_modules = nn.ModuleList([ Quantizer_module(h.n_codes, 512 // h.n_code_groups) for _ in range(h.n_code_groups) ]) self.quantizer_modules2 = nn.ModuleList([ Quantizer_module(h.n_codes, 512 // h.n_code_groups) for _ in range(h.n_code_groups) ]) self.h = h self.codebook_loss_lambda = self.h.codebook_loss_lambda # e.g., 1 self.commitment_loss_lambda = self.h.commitment_loss_lambda # e.g., 0.25 self.residual_layer = 2 self.n_code_groups = h.n_code_groups def for_one_step(self, xin, idx): xin = xin.transpose(1, 2) x = xin.reshape(-1, 512) x = torch.split(x, 512 // self.h.n_code_groups, dim=-1) min_indicies = [] z_q = [] if idx == 0: for _x, m in zip(x, self.quantizer_modules): _z_q, _min_indicies = m(_x) z_q.append(_z_q) min_indicies.append(_min_indicies) # B * T, z_q = torch.cat(z_q, -1).reshape(xin.shape) # loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2) loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \ + self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2) z_q = xin + (z_q - xin).detach() z_q = z_q.transpose(1, 2) return z_q, loss, min_indicies else: for _x, m in zip(x, self.quantizer_modules2): _z_q, _min_indicies = m(_x) z_q.append(_z_q) min_indicies.append(_min_indicies) # B * T, z_q = torch.cat(z_q, -1).reshape(xin.shape) # loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2) loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \ + self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2) z_q = xin + (z_q - xin).detach() z_q = z_q.transpose(1, 2) return z_q, loss, min_indicies def forward(self, xin): # B, C, T quantized_out = 0.0 residual = xin all_losses = [] all_indices = [] for i in range(self.residual_layer): quantized, loss, indices = self.for_one_step(residual, i) # residual = residual - quantized quantized_out = quantized_out + quantized all_indices.extend(indices) # all_losses.append(loss) all_losses = torch.stack(all_losses) loss = torch.mean(all_losses) return quantized_out, loss, all_indices def embed(self, x): # idx: N, T, 4 # print('x ', x.shape) quantized_out = torch.tensor(0.0, device=x.device) x = torch.split(x, 1, 2) # split, 将最后一个维度分开, 每个属于一个index group # print('x.shape ', len(x),x[0].shape) for i in range(self.residual_layer): ret = [] if i == 0: for j in range(self.n_code_groups): q = x[j] embed = self.quantizer_modules[j] q = embed.embedding(q.squeeze(-1)) ret.append(q) ret = torch.cat(ret, -1) # print(ret.shape) quantized_out = quantized_out + ret else: for j in range(self.n_code_groups): q = x[j + self.n_code_groups] embed = self.quantizer_modules2[j] q = embed.embedding(q.squeeze(-1)) ret.append(q) ret = torch.cat(ret, -1) quantized_out = quantized_out + ret return quantized_out.transpose(1, 2) # N, C, T