""" MIT License Copyright (c) 2022 Yi Ren Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch from torch import nn def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class WN(torch.nn.Module): def __init__(self, hidden_size, kernel_size, dilation_rate, n_layers, c_cond=0, p_dropout=0, share_cond_layers=False, is_BTC=False, use_weightnorm=True): super(WN, self).__init__() assert (kernel_size % 2 == 1) assert (hidden_size % 2 == 0) self.is_BTC = is_BTC self.hidden_size = hidden_size self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = c_cond self.p_dropout = p_dropout self.share_cond_layers = share_cond_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if c_cond != 0 and not share_cond_layers: cond_layer = torch.nn.Conv1d(c_cond, 2 * hidden_size * n_layers, 1) if use_weightnorm: self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') else: self.cond_layer = cond_layer for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(hidden_size, 2 * hidden_size, kernel_size, dilation=dilation, padding=padding) if use_weightnorm: in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_size else: res_skip_channels = hidden_size res_skip_layer = torch.nn.Conv1d(hidden_size, res_skip_channels, 1) if use_weightnorm: res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, x, nonpadding=None, cond=None): if self.is_BTC: x = x.transpose(1, 2) cond = cond.transpose(1, 2) if cond is not None else None nonpadding = nonpadding.transpose(1, 2) if nonpadding is not None else None if nonpadding is None: nonpadding = 1 output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_size]) if cond is not None and not self.share_cond_layers: cond = self.cond_layer(cond) for i in range(self.n_layers): x_in = self.in_layers[i](x) x_in = self.drop(x_in) if cond is not None: cond_offset = i * 2 * self.hidden_size cond_l = cond[:, cond_offset:cond_offset + 2 * self.hidden_size, :] else: cond_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, cond_l, n_channels_tensor) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: x = (x + res_skip_acts[:, :self.hidden_size, :]) * nonpadding output = output + res_skip_acts[:, self.hidden_size:, :] else: output = output + res_skip_acts output = output * nonpadding if self.is_BTC: output = output.transpose(1, 2) return output def remove_weight_norm(self): def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm)