import math import random import numpy as np import torch.nn as nn from Preprocessing.Codec.seanet import SEANetDecoder from Preprocessing.Codec.seanet import SEANetEncoder from Preprocessing.Codec.vq import ResidualVectorQuantizer # Generator class EnCodec(nn.Module): def __init__(self, n_filters, D, target_bandwidths=[1, 1.5, 2, 4, 6, 12], ratios=[8, 5, 4, 2], sample_rate=16000, bins=1024, normalize=False): super().__init__() self.hop_length = np.prod(ratios) # 计算乘积 self.encoder = SEANetEncoder(n_filters=n_filters, dimension=D, ratios=ratios) n_q = int(1000 * target_bandwidths[-1] // (math.ceil(sample_rate / self.hop_length) * 10)) self.frame_rate = math.ceil(sample_rate / np.prod(ratios)) # 50 self.bits_per_codebook = int(math.log2(bins)) self.target_bandwidths = target_bandwidths self.quantizer = ResidualVectorQuantizer(dimension=D, n_q=n_q, bins=bins) self.decoder = SEANetDecoder(n_filters=n_filters, dimension=D, ratios=ratios) def get_last_layer(self): return self.decoder.layers[-1].weight def forward(self, x): e = self.encoder(x) max_idx = len(self.target_bandwidths) - 1 bw = self.target_bandwidths[random.randint(0, max_idx)] quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw) o = self.decoder(quantized) return o, commit_loss, None def encode(self, x, target_bw=None, st=None): e = self.encoder(x) if target_bw is None: bw = self.target_bandwidths[-1] else: bw = target_bw if st is None: st = 0 codes = self.quantizer.encode(e, self.frame_rate, bw, st) return codes def decode(self, codes): quantized = self.quantizer.decode(codes) o = self.decoder(quantized) return o