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ABSTRACT

Distance metric learning is a branch of machine learning that aims to learn distances from
the data, which enhances the performance of similarity-based algorithms. This tutorial
provides a theoretical background and foundations on this topic and a comprehensive ex-
perimental analysis of the most-known algorithms. We start by describing the distance
metric learning problem and its main mathematical foundations, divided into three main
blocks: convex analysis, matrix analysis and information theory. Then, we will describe a
representative set of the most popular distance metric learning methods used in classifica-
tion. All the algorithms studied in this paper will be evaluated with exhaustive testing in
order to analyze their capabilities in standard classification problems, particularly consider-
ing dimensionality reduction and kernelization. The results, verified by Bayesian statistical
tests, highlight a set of outstanding algorithms. Finally, we will discuss several potential
future prospects and challenges in this field. This tutorial will serve as a starting point in
the domain of distance metric learning from both a theoretical and practical perspective.
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1 Introduction

The use of distances in machine learning has been present since its inception. Distances provide a similarity
measure between the data, so that close data will be considered similar, while remote data will be consid-
ered dissimilar. One of the most popular examples of similarity-based learning is the well-known nearest
neighbors rule for classification, where a new sample is labeled with the majority class within its nearest
neighbors in the training set. This classifier was presented in 1967 by Cover and Hart [[1], even though this
idea had already been mentioned in earlier publications [2} 3]



Algorithms in the style of the nearest neighbors classifier are among the main motivators of distance metric
learning. These kinds of algorithms have usually used a standard distance, like the Euclidean distance, to
measure the data similarity. However, a standard distance may ignore some important properties available
in our dataset, and therefore the learning results might be non optimal. The search for a distance that brings
similar data as close as possible, while moving non similar data away, can significantly increase the quality
of these algorithms.

During the first decade of the 21st century some of the most well-known distance metric learning algorithms
were developed, and perhaps the algorithm from Xing et al. [4] is responsible for drawing attention to this
concept for the first time. Since then, distance metric learning has established itself as a promising domain
in machine learning, with applications in many fields, such as medicine [} 6], security [7, 8], social media
mining [9, [10], speech recognition [[11} [12]], information retrieval [13} [14], recommender systems [15} [16]
and many areas of computer vision, such as person re-identification [[17, [18]], kinship verification [[19} 20] or
image classification [21} [22]].

Although distance metric learning has proven to be an alternative to consider with small and medium datasets
[23]], one of its main limitations is the treatment of large data sets, both at the level of number of samples
and at the level of number of attributes [24]. In recent years, several alternatives have been explored in order
to develop algorithms for these areas [25} 26].

Several surveys on distance metric learning have been proposed. Among the well-known surveys we can
find the work of Yang and Jin [27], Kulis et al. [28]], Bellet et al. [29] and Moutafis et al. [30]. However,
we must point out several ‘loose ends’ present in these studies. On the one hand, they do not provide an
in-depth study of the theory behind distance metric learning. Such a study would help to understand the
motivation behind the mechanics that give rise to the various problems and tools in this field. On the other
hand, previous studies do not carry out enough experimental analyses that evaluate the performance of the
algorithms on sufficiently diverse datasets and circumstances.

In this paper we undergo a theoretical study of supervised distance metric learning, in which we show the
mathematical foundations of distance metric learning and its algorithms. We analyze several distance metric
learning algorithms for classification, from the problems and the objective functions they try to optimize,
to the methods that lead to the solutions to these problems. Finally, we carry out several experiments
involving all the algorithms analyzed in this study. In our paper, we want to set ourselves apart from
previous publications by focusing on a deeper analysis of the main concepts of distance metric learning,
trying to get to its basic ideas, as well as providing an experimental framework with the most popular metric
learning algorithms. We will also discuss some opportunities for future work in this topic.

Regarding the theoretical background of distance metric learning, we have studied three mathematical fields
that are closely related to this topic. The first one is convex analysis [31,32]. Convex analysis is present in
many distance metric learning algorithms, as these algorithms try to optimize convex functions over convex
sets. Some interesting properties of convex sets, as well as how to deal with constrained convex problems,
will be shown in this study. We will also see how the use of matrices is a fundamental part when modeling
our problem. Matrix analysis [33]] will therefore be the second field studied. The third is information theory
[34]], which is also used in some of the algorithms we will present.

As explained before, our work focuses on supervised distance metric learning techniques. A large number
of algorithms have been proposed over the years. These algorithms were developed with different purposes
and based on different ideas, so that they could be classified into different groups. Thus, we can find
algorithms whose main goal is dimensionality reduction [35} [36} [37]], algorithms specifically oriented to
improve distance based classifiers, such as the nearest neighbors classifier [38} [39], or the nearest centroid
classification [40]], and a few techniques that are based on information theory [41}, 142} 43]]. Some of these
algorithms also allow kernel versions [44, 145,136 42]], that allow for the extension of distance metric learning
to highly dimensional spaces.

As can be seen in the experiments, we compare all the studied algorithms using up to 34 different datasets. In
order to do so, we define different settings to explore their performance and capabilities when considering
maximum dimension, centroid-based methods, different kernels and dimensionality reduction. Bayesian
statistical tests are used to assess the significant differences among algorithms [46].



2 DISTANCE METRIC LEARNING AND MATHEMATICAL FOUNDATIONS

In summary, the aims of this tutorial are:

e To know and understand the discipline of distance metric learning and its foundations.
e To gather and study the foundations of the main supervised distance metric learning algorithms.

e To provide experiments to evaluate the performance of the studied algorithms under several case
studies and to analyze the results obtained. The code of the algorithms is available in the Python
library pydml [47].

Our paper is organized as follows. Section [2|introduces the distance metric problem and its mathematical
foundations, explains the family of distances we will work with and shows several examples and applica-
tions. Section [3] discusses all the distance metric learning algorithms chosen for this tutorial. Section [
describes the experiments done to evaluate the performance of the algorithms and shows the obtained re-
sults. Finally, Sections [5] and [6] conclude the paper by indicating possible future lines of research in this
area and summarizing the work done, respectively. We also provide a glossary of terms in Appendix [A] with
the acronyms used in the paper. So as to avoid overloading the sections with a large theoretical content a
theoretical supplement is provided, in which Appendix [B| presents in a rigorous and detailed manner the
mathematical foundations of distance metric learning, structured in the three blocks discussed previously,
and Appendix [C] provides a detailed explanation of the algorithms included in Section 3]

2 Distance Metric Learning and Mathematical Foundations

In this section we will introduce the distance metric learning problem. To begin with, we will provide
reasons to support the distance metric learning problem in Section [2.1] Then, we will go over the concept
of distance, with special emphasis on the Mahalanobis distances, which will allow us to model our problem
(Section[2.2). Once these concepts are defined, in Section we will describe the distance metric learning
problem, explaining what it consists of, how it is handled in the supervised case and how it is modeled so
that it can be treated computationally. To understand the basics of distance metric learning we provide a
summary of the mathematical foundations underlying this field in Section [2.4] These foundations support
the theoretical description of this discipline as well as the numerous distance metric learning algorithms that
will be discussed in Section[3|and Appendix [C] The mathematical background is then developed extensively
in Appendix [B| Finally, we will finish with Section by detailing some of the uses of distance metric
learning in machine learning.

2.1 Distance Metric Learning: Why and What For?

Similarity-based learning algorithms are among the earliest used in the field of machine learning. They
are inspired by one of the most important components in many human cognitive processes: the ability to
detect similarities between different objects. This ability has been adapted to machine learning by designing
algorithms that learn from a dataset according to the similarities present between the data. These algorithms
are present in most areas of machine learning, such as classification and regression, with the k-Nearest
Neighbors (E-NN) rule [1]]; in clustering, with the k-means algorithm [48]]; in recommender systems, with
collaborative approaches based also on nearest neighbors [49]]; in semi-supervised learning, to construct the
graph representations [S0]; in some kernel methods such as the radial basis functions [51]], and many more.

To measure the similarity between data, it is necessary to introduce a distance, which allows us to establish
a measure whereby it is possible to determine when a pair of samples is more similar than another pair
of samples. However, there is an infinite number of distances we can work with, and not all of them will
adapt properly to our data. Therefore, the choice of an adequate distance is a crucial element in this type of
algorithm.

Distance metric learning arises to meet this need, providing algorithms that are capable of searching for
distances that are able to capture features or relationships hidden in our data, which possibly a standard
distance, like the Euclidean distance, would not have been able to discover. From another perspective,
distance metric learning can also be seen as the missing training step in many similarity-based algorithms,
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such as the lazy nearest-neighbor approaches. The combination of both the distance learning algorithms and
the distance-based learners allows us to build more complete learning algorithms with greater capabilities
to extract information of interest from our data.

Choosing an appropriate distance learned from the data has proven to be able to greatly improve the results of
distance-based algorithms in many of the areas mentioned above. In addition to its potential when adhering
to these learners, a good distance allows data to be transformed to facilitate their analysis, with mechanisms
such as dimensionality reduction or axes selection, as we will discuss later.

2.2 Mahalanobis Distances

We will start by reviewing the concept of distance and some of its properties.

Definition 1. Let X be a non-empty set. A distance or metric over X isamap d: X x X — R that satisfies
the following properties:

1. Coincidence: d(z,y) =0 <= x =y, forevery z,y € X.

2. Symmetry: d(x,y) = d(y,x), for every x,y € X.

3. Triangle inequality: d(z, z) < d(x,y) + d(y, z), for every x,y, z € X.
The ordered pair (X, d) is called a metric space.

The coincidence property stated above will not be of importance to us. That is why we will also consider
mappings known as pseudodistances, which only require that d(x, z) = 0, instead of the coincidence prop-
erty. In fact, pseudodistances are strongly related with dimensionality reduction, which is an important
application of distance metric learning. From now on, when we talk about distances, we will be considering
proper distances as well as pseudodistances.

Remark 1. As an immediate consequence of the definition, we have the following additional properties of
distances:

4. Non negativity: d(z,y) > 0 for every z,y € X.
5. Reverse triangle inequality: |d(x,y) — d(y, 2)| < d(z, z) for every x,y, z € X.
6. Generalized triangle inequality: d(z1,z,) < S0 d(x, zip1) forzy, ... 2, € X

When we work in the d-dimensional Euclidean space, a family of distances become very useful in the
computing field. These distances are parameterized by positive semidefinite matrices and are known as
Mahalanobis distances. In what follows, we will refer to M g 4(R) (resp. M(RR)) as the set of matrices of
dimension d’ x d (resp. square matrices of dimension d), and to Sd(R)ar as the set of positive semidefinite
matrices of dimension d.

Definition 2. Let d € Nand M € S4(R)j. The Mahalanobis distance corresponding to the matrix M is
the map dj;: R? x RY — R given by

dur(a,y) = /(@ —y)TM(z —y), 2,y R

Mahalanobis distances come from the (semi-)dot products in R? defined by the positive semidefinite matrix
M. When M is full-rank, Mahalanobis distances are proper distances. Otherwise, they are pseudodistances.
Note that the Euclidean usual distance is a particular example of a Mahalanobis distance, when M is the
identity matrix . Mahalanobis distances have additional properties specific to distances over normed spaces.

7. Homogeneousness: d(azx,ay) = |a|d(x,y), fora € R, and z,y € R%.

8. Translation invariance: d(x, %) = d(z + z,y + 2), for 2,9, z € R%

4
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Sometimes the term “Mahalanobis distance” is used to describe the squared distances of the form
d2,(z,y) = (x — y)'M(z — y). In the area of computing, it is much more efficient to work with d2,
rather than with dj, as this avoids the calculation of square roots. Although d%w is not really a distance,
it keeps the most useful properties of dj; from the distance metric learning perspective, as we will see,
such as the greater or lesser closeness between different pairs of points. That is why the use of the term
“Mahalanobis distance” for both d; and d%w is quite widespread.

To end this section, we return to the issue of dimensionality reduction that we mentioned when introducing
the concept of pseudodistance. When we work with a pseudodistance o over a set X, it is possible to
define an equivalence relationship given by = ~ y if and only if o(z,y) = 0, for each z,y € X. Using
this relationship we can consider the quotient space X/, and the map : X/ x X/ — R given by
d([z],[y]) = o(x,y), for each [z], [y] € X/~. This map is well defined and is a distance over the quotient
space. When o is a Mahalanobis distance over R?, with rank ¢’ < d (we define the rank of a Mahalanobis
distance as the rank of the associated positive semidefinite matrix matrix), then the previous quotient space
becomes a vector space isomorphic to R, and the distance & is a full-rank Mahalanobis distance over R? .
That is why, when we have a Mahalanobis pseudodistance on R?, we can view this as a proper Mahalanobis
distance over a lower dimensional space, hence we have obtained a dimensionality reduction.

2.3 Description of Distance Metric Learning

Distance Metric Learning (DML) is a machine learning discipline with the purpose of learning distances
from a dataset. In its most general version, a dataset X = {xz1,...,xx} is available, on which certain
similarity measures between different pairs or triplets of data are collected. These similarities are determined
by the sets

S = {(zj,zj) € X x X: z; and z; are similar. },
D = {(x;,zj) € X x X': x; and x; are not similar.},
R = {(zj,xj,2)) € X x X x X': ; is more similar to z; than to z;.}.

With these data and similarity constraints, the problem to be solved consists in finding, after establishing a
family of distances D, those distances that best adapt to the criteria specified by the similarity constraints. To
do this, a certain loss function  is set, and the sought-after distances will be those that solve the optimization

problem

min/(d, S, D, R).

deD
When we focus on supervised learning, in addition to dataset X' we have a list of labels v, ..., ynN corre-
sponding to each sample in X. The general formulation of the DML problem is easily adapted to this new
situation, just by considering the sets S and D as sets of pairs of same-class samples and different-class
samples, respectively. Two main approaches are followed to establish these sets. The global approach
considers the sets .S and D to be

S = {(xi,arj) cX x X: Yi :yj},
D ={(zj,zj) € X x X:y; #y;}.
On the other hand, the local approach replaces the previous definition of S with
S ={(zi,z;) e X x X:y; =y;and xj € U(x;)},

where U (x;) denotes a neighborhood of x;, that is, a set of points that should be close to x;, which has to
be established before the learning process by using some sort of prior information, or a standard similarity
measure. The set D remains the same in the local approach, since different-class samples are not meant to
be similar in a supervised learning setting. In addition, the set R may be also available in both approaches
by defining triplets (z;, z;, ;) where in general y; = y; # v, and they verify certain conditions imposed on
the distance between x; and x;, as opposed to the distance between x; and x;. This is the case, for example,
for impostors in the algorithm (see Section[3.2.T|and [38]]). In any case, labels have all the necessary
information in the field of supervised DMLl From now on we will focus on this kind of problem.



2.3 Description of Distance Metric Learning

Furthermore, focusing on the nature of the dataset, practically all of the theory is developed for
numerical data. Although it is possible to define relevant distances for non-numerical attributes [[52} 53]
and although some learning processes can be performed with them [54} 55]], the richness of the distances
available to numerical features, their ability to be parameterized computationally, and the fact that nominal
data can be converted to numerical variables or ordinal variables, with appropriate encoding [56], cause the
relevant distances in this discipline to be those defined for numerical data. For this reason, from now on, we
will focus on supervised learning problems with numerical datasets.

We will suppose then that X C R%. As we saw in the previous section, for finite-dimensional vector spaces
we have the family of Mahalanobis distances, D = {dy;: M € Sy(R)§}. With this family, we have at our
disposal all the distances associated with dot products in R¢ (and in lower dimensions). In addition, this
family is determined by the set of positive semidefinite matrices, and therefore, we can use these matrices,
which we will call metric matrices, to parameterize distances. In this way, the general problem adapted to
supervised learning with Mahalanobis distances can be rewritten as

min  £(dp, (x1,91),-- -, (TN, UN))-
MeSa(R)F

However, this is not the only way to parameterize this type of problem. We know, from the matrix de-
composition theorem discussed in Section [2.4|and Theorem [5| that if M € Sy(R){, then there is a matrix

L € My(R) so that M = LT L, and this matrix is unique except for an isometry. So, then we get
diy(z,y) = (x —y) ' M(z —y) = (z —y) LT L(z —y) = (L(z — 9))" (L(z — y)) = [|L(z — y)|3-

Therefore, we can also parameterize Mahalanobis distances through any matrix, although in this case the
interpretation is different. When we learn distances through positive semidefinite matrices we are learning
a new metric over R?. When we learn distances with the previous L matrices, we are learning a linear
map (given by z — Lz) that transforms the data in the space, and the corresponding distance is the usual
Euclidean distance after projecting the data onto the new space using the linear map. Both approaches are
equivalent thanks to the matrix decomposition theorem (Theorem 5.

In relation to dimensionality, it is important to note that, when the learned metric M is not full-rank, we
are actually learning a distance over a space of lower dimension (as we mentioned in the previous section),
which allows us to reduce the dimensionality of our dataset. The same occurs when we learn linear maps that
are not full-rank. We can extend this case and opt to learn directly linear maps defined by L € My 4(R),
with d’ < d. In this way, we ensure that data are directly projected into a space of dimension no greater than
d.

Both learning the metric matrix M and learning the linear transformation L, are useful approaches to model
problems, each one with its advantages and disadvantages. For example, parameterizations via M
usually lead to convex optimization problems. In contrast, convexity in problems parameterized by L is
not so easy to achieve. On the other hand, parameterizations using L make it possible to learn projections
directly onto lower dimensional spaces, while dimensional constraints for problems parameterized by M
are not so easy to achieve. Let us examine these differences with simple examples.

Example 1. Many of the functions we will want to optimize will depend on the squared distance defined
by the metric M or by the linear transformation L, that is, either they will have terms of the form |jv||3, =
v M, or of the form ||v||2 = ||Lv||3. Both the maps M ~ |[v||3; and L ~ ||v|| are convex (the first
is actually affine). However, if we want to substract terms in this way, we lose convexity in L, because
the mapping L ~ —||v||2 is no longer convex. In contrast, the mapping M +— —||v||%, is still affine and,
therefore, convex.

Example 2. Rank constraints are not convex, and therefore we may not dispose of a projection onto the
set corresponding to those constraints, unless we learn the mapping (parameterized by L) directly to the
space with the desired dimension, as explained before. For example, if we consider the set C = {M €

So(R)g: r(A) <1}, weget A = (3 8) €Cand B = (8 (2)> € C. However, (1-\)A+AB=1¢C,
for A = 1/2.
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2.4 Mathematical Foundations of Distance Metric Learning

There are three main mathematical areas that support convex analysis, matrix analysis and infor-
mation theory. The first provides the necessary tools so that many of the algorithms can address their
optimization problems. Thanks to the second we can parameterize DMI] and in this way we can compute
the different problems. It also provides us with some interesting results when it comes to solving certain
problems related to dimensionality reduction. Finally, the third field provides us with concepts and tools
that are very useful for designing algorithms that use probability distributions associated with the data.

2.4.1 Convex Analysis

Let us begin with convex analysis. One of the properties of convex sets that makes convex analysis of great
interest in is known as the convex projection theorem (Theorem [2), which ensures that for any non-
empty convex closed set & in R? and for every point z € R? there is a single point zo € K for which
the distance from x to K is the same to the distance from z to xg. That is, the distance from z to K is
materialized in the point xg, which is called the projection of x to K.

The existence of a projection mapping onto any closed and convex set in R? is fundamental when optimizing
convex functions with convex constraints, which are frequent, in particular, in many algorithms. Let
us first discuss optimization mechanisms when working with unconstrained differentiable functions, which,
although they do not strictly take part in convex analysis, are also present in some algorithms and are
the basis for convex optimization mechanisms. In these cases, the most popular techniques are the well-
known gradient descent methods, which are iterative methods. The basic idea of gradient descent methods
is to move in the direction of the gradient of the objective function in order to optimize it. We show in
[B.1.2]that, indeed, small displacements in the gradient direction guarantee the improvement of the objective
function, proving the effectiveness of these methods.

Returning to the constrained case, we can see that gradient descent methods are no longer valid, since the
displacement in the gradient direction can no longer fulfill the constraints. However, we will show that,
if after the gradient step we project the obtained point onto the convex set determined by the constraints,
the combination of both movements contributes to improving the value of the objective function as long
as the initial gradient step is small enough. This extension of gradient descent to the constrained convex
case is known as the projected gradient method. There are also other approaches, such as the penalty
methods, which allow these problems to be handled by transforming the constrained objective function into
a new unconstrained objective function in which the violations of the previous constraints are converted
into penalties that worsen the value of the new objective function [57]]. They will not usually, however, be
preferred in the matrix problems we will be dealing with, as they may be computationally expensive and
difficult to adapt [58]].

Finally, we must highlight other tools of interest for the optimization problems to be studied. Firstly, when
working with convex problems with multiple constraints, the projections on each individual constraint are
often known, but the projection onto the set determined by all the constraints is not. With the method known
as the iterated projections method (see Appendix [B.1.2) we can approach this projection by subsequently
projecting onto each of the individual constraints until convergence (which is guaranteed) is obtained. Lastly,
convex functions that are not differentiable everywhere can still be optimized following the approaches
discussed here, as they admit sub-gradients at every point. Sub-gradient descent methods (see Appendix
can work in the same way as gradient descent methods and can therefore be applied with convex
functions that may not be differentiable at some points.

2.4.2 Matrix Analysis

As we have already seen, matrices are a key element in There are several results that are essential
for the development of the theory and its algorithms. The first of these is the matrix decomposition
theorem (Theorem [5), which was already mentioned in Section[2.3] This theorem states that for any positive
matrix M € Sd(R)g there is a matrix L € My(R) so that M = LTL and L is unique except for an
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isometry. This result allows us to approach [DML! from the two perspectives (learning the metric M or
learning the linear map L) already discussed in Section[2.3]

An important aspect when designing algorithms is the geometric manipulation of the matrices (for
learning both M and L). Observe that to be able to talk about the convex analysis concepts discussed
previously over the set of matrices, we first need to establish an inner product over them. The Frobenius
inner product allows us to identify matrices as vectors where we add the matrix rows one after the other, and
then compute the usual vectorial inner product with these vectors. With the Frobenius product we convert
the matrices set in a Hilbert space, and therefore can apply the convex analysis theory studied in the previous
section.

Staying on this subject, we have to highlight a case study of particular interest. We will see many situations
where we want to optimize a convex function defined on a matrix space, with the restriction that the vari-
able is positive semidefinite. These optimization problems are convex and are usually called semidefinite
programming problems. We can optimize these objective functions using the projected gradient descent
method. The semidefinite projection theorem (Theorem |4) states that we can compute the projection of a
matrix onto the positive semidefinite cone by performing an eigenvalue decomposition, nullifying the nega-
tive eigenvalues and recomposing the matrix with the new eigenvalues. Therefore, we know how to project
onto the constraint set and consequently we can apply the projected gradient method.

Finally, we will see that certain algorithms, especially those associated with dimensionality reduction, use
optimization problems with similar structures. These problems involve one or more symmetric matrices and
the objective function is obtained as a trace after performing certain operations with these matrices. This is,
for instance, the case of the objective function of the well-known principal components analysis, which can
be written as

max tr (LALT)
LeMyryq(R)

st: LLT =1,

where A is a symmetric matrix of dimension d. These problems have the property that they can be optimized
without using gradient methods, since an optimum can be built by taking the eigenvectors associated with
the largest eigenvalues of the matrices involved in the problem (in the case described here, the eigenvectors
of A). In Appendix [B.2.3|we present these problems in more detail and show how their solution is obtained.

2.4.3 Information Theory

Information theory is a branch of mathematics and computer theory with the purpose of establishing a
rigorous measure to quantify the information and disorder found in a communication message. It has been
applied in most science and engineering fields. In[DML] information theory is used in several algorithms to
measure the closeness between probability distributions. Then, these algorithms try to find a distance metric
for which these probability distributions are as close as possible or as far as possible, depending on what
distributions are defined. The measures used in this area, unlike distances, only require the properties of non-
negativity and coincidence, and are called divergences. We will use two different divergences throughout
this study:

o The relative entropy or the Kullback-Leibler divergence, defined for probability distributions p and
¢, and X the random variable corresponding to p as

KL(pllq) = Ep [log Zgi] :

o The Jeffrey divergence or the symmetric relative entropy, defined for p, ¢ and X in the same condi-
tions as above, as
JE(pllg) = KL(pllq) + KL(qllp)-

The key fact that makes divergences very useful in [DMLl is that, when the distributions involved are mul-
tivariate gaussian, these divergences can be expressed in terms of matrix divergences, which give rise to
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problems that can be dealt with quite effectively using the tools described in this section. In Appendix
we present the matrix expressions obtained for the Kullback-Leibler and the Jeffrey divergences for the most
remarkable cases.

2.5 Use Cases in Machine Learning

This section describes some of the most prominent uses of [DMIlin machine learning, illustrated with several
examples.

e Improve the performance of distance-based classifiers. This is one of the main purposes of
Using such learning, a distance that fits well with the dataset and the classifier can be found,
improving the performance of the classifier [38, 39]]. An example is shown in Figure
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Figure 1: Suppose we have a dataset in the plane, where data can belong to three different classes, whose regions are defined by
parallel lines. Suppose that we want to classify new samples using the one nearest neighbor classifier. If we use Euclidean distance,
we would obtain the classification regions shown in the image on the left, because there is a greater separation between each sample
in class B and class C than there is between the regions. However, if we learn an adequate distance and try to classify with the
nearest neighbor classifier again, we obtain much more effective classification regions, as shown in the center image. Finally, as
we have seen, learning a metric is equivalent to learning a linear map and to use Euclidean distance in the transformed space. This
is shown in the right figure. We can also observe that data are being projected, except for precision errors, onto a line, thus we are
also reducing the dimensionality of the dataset.

e Dimensionality reduction. As we have already commented, learning a low-rank metric implies a
dimensionality reduction on the dataset we are working with. This dimensionality reduction pro-
vides numerous advantages, such as a reduction in the computational cost, both in space and time, of
the algorithms that will be used later, or the removal of the possible noise introduced when picking
up the data. In addition, some distance-based classifiers are exposed to a problem called curse of
dimensionality (see, for example, [59], sec. 19.2.2). By reducing the dimension of the dataset, this
problem also becomes less serious. Finally, if deemed necessary, projections onto dimension 1, 2
and 3 would allow us to obtain visual representations of our data, as shown in Figure[2] In general,
many real-world problems arise with a high dimensionality, and need a dimensionality reduction to
be handled properly.

e Axes selection and data rearrangement. Closely related to dimensionality reduction, this appli-
cation is a result of algorithms that learn transformations which allow the coordinate axes to be
moved (or selected according to the dimension), so that in the new coordinate system the vectors
concentrate certain measures of information on their first components [60]. An example is shown
in Figure
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2.5 Use Cases in Machine Learning
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Figure 2: ’Digits’ dataset consists of 1797 examples. Each of them consists of a vector with 64 attributes, representing intensity
values on an 8x8 image. The examples belong to 10 different classes, each of them representing the numbers from 0 to 9. By
learning an appropriate transformation we are able to project most of the classes on the plane, so that we can clearly perceive the
differentiated regions associated with each of the classes.
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Figure 3: The dataset in the left figure seems to concentrate most of its information on the diagonal line that links the lower left and
upper right corners. By learning an appropriate transformation, we can get that direction to fall on the horizontal axis, as shown in
the center image. As a result, the first coordinate of the vectors in this new basis concentrates a large part of the variability of the
vector. In addition, it seems reasonable to think that the values introduced by the vertical coordinate might be due to noise, and so,
we can even just keep the first component, as shown in the right image.
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2 DISTANCE METRIC LEARNING AND MATHEMATICAL FOUNDATIONS

e Improve the performance of clustering algorithms. Many of the clustering algorithms use a dis-
tance to measure the closeness between data, and thus establish the clusters so that data in the same
cluster are considered close for that distance. Sometimes, although we do not know the ideal group-
ings of the data or the number of clusters to establish, we can know that certain pairs of points must
be in the same cluster and that other specific pairs must be in different clusters [4]. This happens
in numerous problems, for example, when clustering web documents [61]]. These documents have
a lot of additional information, such as links between documents, which can be included as similar-
ity constraints. Many clustering algorithms are particularly sensitive to the distance used, although
many also depend heavily on the parameters with which they are initialized [62, 163]. It is therefore
important to seek a balance or an appropriate aggregation between these two components. In any
case, the parameter initialization is beyond the scope of this paper.

e Semi-supervised learning. Semi-supervised learning is a learning model in which there is one set
of labeled data and another set (generally much larger) of unlabeled data. Both datasets are intended
to learn a model that allows new data to be labeled. Semi-supervised learning arises from the fact
that in many situations collecting unlabeled data is relatively straightforward, but assigning labels
can require a supervisor to assign them manually, which may not be feasible. In contrast, when a
lot of unlabeled data is used along with a small amount of labeled data, it is possible to improve
learning outcomes considerably, as exemplified in Figure 4, Many of these techniques consist of
constructing a graph with weighted edges from the data, where the value of the edges depends on
the distances between the data. From this graph we try to infer the labels of the whole dataset, using
different propagation algorithms [50]. In the construction of the graph, the choice of a suitable
distance is important, thus comes into play [64]].

Figure 4: Learning with only supervised information (left) versus learning with all unsupervised information (right).

From the applications we have seen, we can conclude that can be viewed as a preprocessing step
for many distance-based learning algorithms. The algorithms analyzed in our work focus on the first three
applications of the above enumeration. It should be noted that, although the fields above are those where
[DMIhas traditionally been used, today, new prospects and challenges for[DMI]are being considered. They
will be discussed in Section
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3 Algorithms for Distance Metric Learning

This section introduces some of the most popular techniques currently being used in supervised DMLl Due
to space issues, the section will give a brief description of each of the algorithms, while a detailed description
can be found in Appendix [C| where the problems the algorithms try to optimize are analyzed, together with
their mathematical foundations and the techniques used to solve them.

Table [1| shows the algorithms studied throughout this work, including name, references and a short descrip-
tion. These algorithms will be empirically analyzed in the next section. This study is not intended to be
exhaustive and therefore only some of the most popular algorithms have been selected for the theoretical
study and the subsequent experimental analysis.

We will now provide a brief introduction to these algorithms. According to the main purpose of each al-
gorithm, we can group them into different categories: dimensionality reduction techniques (Section [3.1)),
algorithms directed at improving the nearest neighbors classifiers (Section [3.2)), algorithms directed at im-
proving the nearest centroid classifiers (Section [3.3), or algorithms based on information theory (Section
[3.4). These categories are not necessarily exclusive, but we have considered each of the algorithms in the
category associated with their dominant purpose. We also introduce, in Section several algorithms with
less specific goals, and finally, in Section [3.6] the kernel versions for some of the algorithms studied.

We will explain the problems that each of these techniques try to solve. For a more detailed description of
each algorithm, the reader can refer to the corresponding section of the appendix as shown in Table [T}

3.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques try to learn a distance by searching a linear transformation from the
dataset space to a lower dimensional Euclidean space. We will describe the algorithms [PCA] [63]], [33]]
and [36].

3.1.1 Principal Components Analysis (PCA]

[65] is one of the most popular dimensionality reduction techniques in unsupervised Although
is an unsupervised learning algorithm, it is necessary to talk about it in our paper, firstly because
of its great relevance, and more particularly, because when a supervised algorithm does not allow a
dimensionality reduction, can be first applied to the data in order to be able to use the algorithm later
in the lower dimensional space.

The purpose of is to learn a linear transformation from the original space R? to a lower dimensional
space R* for which the loss when recomposing the data in the original space is minimized. This has
been proven to be equivalent to iteratively finding orthogonal directions for which the projected variance
of the dataset is maximized. The linear transformation is then the projection onto these directions. The
optimization problem can be formulated as

max tr (LELT) ,
LeMyyqa(R)
LLT=I

where X is, except for a constant, the covariance matrix of &X', and tr is the trace operator. The solution to
this problem can be obtained by taking as the rows of L the eigenvectors of 3 associated with its largest
eigenvalues.

3.1.2 Linear Discriminant Analysis (LDA)

[35] is a classical technique with the purpose of learning a projection matrix that maximizes the
separation between classes in the projected space using within-class and between-class variances. It follows
a scheme similar to the one proposed by but in this case it takes the supervised information provided
by the labels into account.

12



3 ALGORITHMS FOR DISTANCE METRIC LEARNING

Name References Appendix Description
section
IPCA] Jolliffe [65] C.1.1 A dimensionality reduction technique that obtains

directions maximizing variance. Although not su-
pervised, it is important to allow dimensionality re-
duction in other algorithms that are not able to do so
on their own.

Fisher [35] C.1.2 A dimensionality reduction technique that obtains
direction maximizing a ratio involving between-
class variances and within-class variances.

Wang and Zhang [36] C.1.3 A dimensionality reduction technique that aims
at optimizing an average neighborhood margin
between same-class neighbors and different-class
neighbors, for each of the samples.

Weinberger and Saul [38] |C.2.1 An algorithm aimed at improving the accuracy of
the k-neighbors classifier. It tries to optimize a two-
term error function that penalizes, on the one hand,
large distance between each sample and its farget
neighbors, and on the other hand, small distances
between different-class samples.

Goldberger et al. [39] C.2.2 An algorithm aimed at improving the accuracy of
the k-neighbors classifier, by optimizing the ex-
pected leave-one-out accuracy for the nearest neigh-
bor classification.

Mensink et al. [40] C.3.1 An algorithm aimed at improving the accuracy of the
nearest class mean classifier, by optimizing a log-
likelihood for the labeled data in the training set.

Mensink et al. [40] C.32 A generalization of the NCMML] algorithm aimed
at improving nearest centroids classifiers that allow
multiple centroids per class.

Davis et al. [41] C4.1 An information theory based technique that aims
at minimizing the Kullback-Leibler divergence with
respect to an initial gaussian distribution, but while
keeping certain similarity constraints between data.

DMIMI] Nguyen et al. [42] C4.2 An information theory based technique that aims

at maximizing the Jeffrey divergence between two

distributions, associated to similar and dissimilar
points, respectively.

Z

NCMMI

;TR BER S

Globerson and Roweis [C.4.3 An information theory based technique that tries to

[43] collapse same-class points in a single point, as far as
possible from the other classes collapsing points.

Xing et al. [4] C.5.1 A [DML]algorithm that globally minimizes the dis-
tances between same-class points, while fulfill-
ing minimum-distance constraints for different-class
points.

DM Ying and Li [66] C.5.2 A [DMLl algorithm similar to [CST] that offers a dif-
ferent resolution method based on eigenvalue opti-
mization.

LDML] Guillaumin et al. [67] C.5.3 A probabilistic approach for DMLlbased on the lo-
gistic function.

[KCMNN] Weinberger and Saul [38]; [C.6.1 The kernel version of

Torresani and Lee [44]

Wang and Zhang [36] C.6.2 The kernel version of ANMM]

[KDMIMI Nguyen et al. [42] C.6.3 The kernel version of

[KDA] Mika et al. [43] C.6.4 The kernel version of

Table 1: Description of the DMl Jalgorithms analyzed in this study.
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3.1 Dimensionality Reduction Techniques

The optimization problem of [LDAlis formulated as

tr (LS, LYY Y(LS, LT
el T (ESETESLT).

where Sy, and S, are, respectively, the between-class and within-class scatter matrices, which are defined
as

Sy =3 Ne(pe — ) (pe — 12)7,

ceC

Sw = Z Z(xl - ,uc)(xi - :U’C)T’

ceC ieCe

where C is the set of all the labels, C,. is the set of indices ¢ for which y; = ¢ € C, N, is the number of
samples in X’ with class ¢, . is the mean of the training samples in class ¢ and p is the mean of the whole
training set. The solution to this problem can be found by taking the eigenvectors of S!S}, associated with
its largest eigenvalues to be the rows of L.

3.1.3 Average Neighborhood Margin Maximization (ANMM)

[36]) is another DML technique specifically oriented to dimensionality reduction that tries to solve
some of the limitations of PCA]and

The objective of[ANMM]is to learn a linear transformation L € Mg 4(R), with d’ < d that maximizes an
average neighborhood margin defined, for each sample, by the difference between its average distance to
its nearest neighbors of different class and the average distance to its nearest neighbors of same class.

If we consider the set /\/’f of the ¢ samples in X’ nearest to x; and with the same class as x;, and the set
NF of the ¢ samples in X nearest to z; and with a different class to x;, we can express the global average
neighborhood margin, for the distance defined by L, as

N

: | Lati — Lay | |Lai — La|?
’)/ = _— - 0 J
> X TR >

i=1 \k: zENF J:a;eN?

In this expression, each summand is associated with each sample z; in the training set, and the positive term
inside each summand represents the average distance to its { nearest neighbors of different classes, while the
negative term represents the average distance to its £ nearest neighbors of the same class. Therefore, these
differences constitute the average neighborhood margins for each sample ;. The global margin v can be
expressed in terms of a scatterness matrix containing the information related to different-class neighbors,
and a compactness matrix that stores the information corresponding to the same-class neighbors, that is,

~E =tr(L(S — C)LT),

where S and C are, respectively, the scatterness and compactness matrices, defined as

(i — ) (@i — )"
S:Z Z N
i k:zpeN? ¢
(5 — ;) (x; — x)T
oy ¥ lmnleo
7 j:l‘je./\/'io ?

If we impose the scaling restriction LL” = I (scaling would increase the average neighborhood margin
indefinitely), the average neighborhood margin can be maximized by taking the eigenvectors of S — C
associated with its largest eigenvalues to be the rows of L.
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3 ALGORITHMS FOR DISTANCE METRIC LEARNING

3.2 Algorithms to Improve Nearest Neighbors Classifiers

One of the main applications of [DML] is to improve other distance based learning algorithms. Since the
nearest neighbors classifier is one of the most popular distance based classifiers many DML algorithms are
designed to improve this classifier, as is the case with [38]] and NCAI [39]].

3.2.1 Large Margin Nearest Neighbors (LMNN))

[CMNN] [38] is a[DML algorithm aimed specifically at improving the accuracy of the k-nearest neighbors
classifier.

[LMNNItries to bring each sample as close as possible to its target neighbors, which are k pre-selected same-
class samples requested to become the nearest neighbors of the sample, while trying to prevent samples from
other classes from invading a margin defined by those target neighbors. This setup allows the algorithm to
locally separate the classes in an optimal way for k-neighbors classification.

Assuming the sets of target neighbors are chosen (usually they are taken as the nearest neighbors for Eu-
clidean distance), the error function that [LMNN| minimizes is a two-term function. The first term is the
target neighbors pulling term, given by

N
eputt(M) =D ) dis(i, ;)7
1=1 j~~i
where dj is the Mahalanobis distance corresponding to M € Sd(R)E{ and j ~ ¢ iff x; is a target neighbor
of z;. The second term is the impostors pushing term, given by

N N
push (M) =D 3 > (1= ya) [+ dar (s, 25)* — dag (i, 1)) 1,

i=1 j~i =1
where y; = 1 if y; = y; and 0 otherwise, and [-]; is defined as [z]4 = max{z,0}. Finally, the objective
function is given by

e(M) = (1 — pepuu(M) + pepusn (M), €10, 1.

This function can be optimized using semidefinite programming. It is possible to optimize this function in
terms of L, using gradient methods, as well. By optimizing in terms of M we gain convexity in the problem,
while by optimizing in terms of L we can use the algorithm to force a dimensionality reduction.

3.2.2 Neighborhood Components Analysis (NCA)

INCAI[39] is another DMI]algorithm aimed specifically at improving the accuracy of the nearest neighbors
classifiers. It is designed is to learn a linear transformation with the goal of minimizing the leave-one-out
error expected by the nearest neighbor classification.

To do this, we define the probability that a sample z; € X has x; € X as its nearest neighbor for the distance
defined by L € My(R), pé as the softmax

ok = exp (— | La; — Laj|?) (G #1) .
7 S exp (—||Lx; — Lagl|?) ' pi; = 0.
lFi

The expected number of correctly classified samples according to this probability is obtained as

N
FL) =323l

i=1 jeC;

where C; is the set of indices j so that y; = y;. The function f can be maximized using gradient methods,
and the distance resulting from this optimization is the one that minimizes the expected leave-one-out error,
and therefore, the one that NCAllearns.
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3.3 Algorithms to Improve Nearest Centroids Classifiers

3.3 Algorithms to Improve Nearest Centroids Classifiers

Apart from the nearest neighbors classifiers, other distance-based classifiers of interest are the so-called
nearest centroid classifiers. These classifiers obtain a set of centroids for each class and classify a new
sample by considering the nearest centroids to the sample. There are also algorithms designed for
these classifiers, as is the case for[NCMMI] and NCMO [40].

3.3.1 Nearest Class Mean Metric Learning (NCMMIL)

[40] is a[DMI] algorithm specifically designed to improve the Nearest Class Mean (NCM) classi-
fier. To do this, it uses a probabilistic approach similar to that used by to improve the accuracy of the
nearest neighbors classifier.

In this case, we define the probability that a sample x; € X will be labeled with the class ¢, according to the
nearest class mean criterion, for the distance defined by L € My «4(R), as

(e = P C A )
> exp (L@ — pe)[?)°
cdeC
where C is the set of all the classes and . is the mean of the training samples with class ¢. The objec-
tive function that tries to maximize is the log-likelihood for the labeled data in the training set,
according to the probability defined above, that is,

N
1
L(L) = N ;logpL(yilxi)-
1=
This function can be optimized using gradient methods.

3.3.2 Nearest Class with Multiple Centroids (NCMC)

INCMClis the generalization of the nearest class mean classifier. In this classifier, a set with an arbitrary num-
ber of centroids is calculated for each class, using a clustering algorithm. Then, a new sample is classified
by assigning the label of its nearest centroid.

An immediate generalization of NCMMI] allows us to learn a distance directed at improving This

algorithm is also referred to as In this case, instead of the class means, we have a set of
centroids {m.; }?C‘:l, for each class ¢ € C. The generalized probability that a sample z; € X will be labeled
with the class ¢ is now given by pr(c|z) = E?;l pr(me;|z), where pr(me;|z) are the probabilities that
me; is the closest centroid to z, and is given by

exp (— 3/ Lz —me,)[?)

5 5% exp (AL — me)2)

ceCi=1

prL(me;lr) =

Again, maximizes the log-likelihood function £(L) = & S°N | pr,(y;|2;) using gradient methods.

3.4 Information Theory Based Algorithms

Several algorithms rely on information theory to learn their corresponding distances. The information
theory concepts used in the algorithms we will introduce below are described in Appendix [B.3] These
algorithms have similar working schemes. First, they establish different probability distributions on the
data, and then they try to bring these distributions closer or further away using divergences. The information
theory based algorithms we will study are [TML] [41]], [42] and MCML [43].
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3 ALGORITHMS FOR DISTANCE METRIC LEARNING

3.4.1 Information Theoretic Metric Learning (ITML)

ITMLI[41] is alDMILtechnique intended to find a distance metric as close as possible to an initial pre-defined
distance, on which similarity and dissimilarity constraints for same-class and different-class samples are
satisfied. This approach tries to preserve the properties of the original distance while adapting it to our
dataset thanks to the restrictions it adds.

We will denote the positive definite matrix associated with the initial distance as My. Given any positive
definite matrix M € Sy(R)™" and a fixed mean vector x, we can construct a normal distribution p(x|M)
with mean p and covariance M. [TMLtries to minimize the Kullback-Leibler divergence between p(x| M)
and p(x| M), subject to several similarity constraints on the data, that is

i KL M, M
i (p([Mo)||p(z|M))

st dy(zg,zy) <wu, (i,7) €8

dM(iUZ,QTJ)Zl, (17])€D7
where S and D are sets of pairs of indices on the elements of X that represent the samples considered
similar and not similar, respectively (normally, same-labeled pairs and different-labeled pairs), and « and !

are, respectively, upper and lower bounds for the similarity and dissimilarity constraints. This problem can
be optimized using gradient methods combined with iterated projections in order to fulfill the constraints.

3.4.2 Distance Metric Learning through the Maximization of the Jeffrey divergence (DMLMJ)

[DMIM]] [42] is another DML technique based on information theory that tries to separate, with respect to
the Jeffrey divergence, two probability distributions, the first associated with similar points while the second
is associated with dissimilar points.

defines two difference spaces: a k-positive difference space that contains the differences between
each sample in the dataset and its k-nearest neighbors from the same class, and a k-negative difference
space that contains the differences between each sample and its k-nearest neighbors from different classes.
Over these spaces, for a distance determined by a linear transformation L € Mg 4(R), two gaussian
distributions P, and @, with equal mean are assumed. Then, the problem that DMLM]J optimizes is

LeAI/ﬁéfd(R) f(L) =JF(PLl|Qr) = KL(PL||Qr) + KL(QL|| PL)-

This problem can be transformed into a trace optimization problem similar to those of and [LDA] and
can also be solved by taking eigenvectors from the covariance matrices involved in the problem.

3.4.3 Maximally Collapsing Metric Learning (MCML)

[43] is another technique based on information theory. The key idea of this algorithm is the
fact that we would obtain an ideal class separation if we could project all the samples from the same class
on a same point, far enough away from the points on which the rest of the classes would be projected.

In order to try to achieve this,[MCMI defines a probability that a sample x; will be classified with the same
label as x;, with the distance given by a positive semidefinite matrix M € Sy (]R)O+ , PM(j7), as the softmax

pM(]‘Z) _ eXp(—dM(i’i,ZUj)Q)

> exp(—da(zi, x)?)
iZi

Then, it also defines a probability po(j|i) for the ideal situation in which all the same-class samples collapse
into the same point, far enough away from the collapsing points of the other classes, given by

po(jli) o :
) {0, Yi # Y
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3.5 Other Distance Metric Learning Techniques

tries to bring p™ (-|7) as close to the ideal p°(-|7) as possible, for each 7, using the Kullback-Leibler
divergence between them. Therefore, the optimization problem is formulated as

N
. _ MM (1]
Merg:&)g f(M) = ;KL [po(-19)[Ip™ (-]2)]

This function can be minimized using semidefinite programming.

3.5 Other Distance Metric Learning Techniques

In this section we will study some different proposals for[DMLltechniques. The algorithms we will analyze

are (4], [66] and [67].

3.5.1 Learning with Side Information (LSI)

[4]], also sometimes referred to as Mahalanobis Metric for Clustering (MMUO) is possibly one of the first
algorithms that has helped make the concept of more well known. This algorithm is a global approach
that tries to bring same-class data closer together while keeping data from different classes far enough apart.

Assuming that the sets .S and D represent, respectively, pairs of samples that should be considered similar
or dissimilar (i.e. samples that belong to the same class or to different classes, respectively), looks for a
positive semidefinite matrix M € S;(R){ that optimizes the following problem:

m]vi[n Z dM(xi,xj)2
(z4,25)€S

s.t.: Z du(xi,xj) > 1

(z4,x5)€D

M e Sd(R)ar.

This problem can be optimized using gradient descent together with iterated projections in order to fulfill
the constraints.

3.5.2 Distance Metric Learning with eigenvalue optimization (DML-eig)

[66]] is a[DMTI] algorithm inspired by the algorithm of the previous section, proposing a very
similar optimization problem but offering a completely different resolution method, based on eigenvalue
optimization.

We will once again consider the two sets S and D, of pairs of samples that are considered similar and
dissimilar, respectively. proposes an optimization problem that slightly differs from that proposed
by the algorithm, given by

; d )2
o)
S.t.: Z dM(xi,l‘j)2 <1
($1',JJ]')€S
M € Sd(R>a_

This problem can be transformed into a minimization problem for the largest eigenvalue of a symmetric
matrix. This is a well-known problem and there are some iterative methods that allow this minimum to be
reached [68]].
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3 ALGORITHMS FOR DISTANCE METRIC LEARNING

3.5.3 Logistic Discriminant Metric Learning (LDML)

[LDMI [67]] is a[DML algorithm in which the optimization model makes use of the logistic function.
Recall that the logistic or sigmoid function is the map o: R — R given by

1
o(x) = T
In[LDMTII the logistic function is used to define a probability, which will assign the greater probability the
smaller the distance between points. Given a positive semidefinite matrix M € S4(R){, this probability is
expressed as

2
pijm = o (b—llzi — z;llar),
where b is a positive threshold value that will determine the maximum value achievable by the logistic
function, and that can be estimated by cross validation. tries to maximize the log-likelihood given
by

N
L(M) =) yijlogpiju + (1 = yij) log(1 — pijar),
i,j=1
where y;; is a binary variable that takes the value 1 if y; = y; and O otherwise. This function can be
optimized using semidefinite programming.

3.6 Kernel Distance Metric Learning

Kernel methods constitute a paradigm within machine learning that is very useful in many of the problems
addressed in this discipline. They usually arise in problems where the learning algorithm capability is
reduced, typically due to the shape of the dataset. A classic learning algorithm where the kernel trick is very
useful is the Support Vector Machines (SVM) classifier [69]. An example for this case is given in Figure 5

In[DMLI the usefulness of kernel learning is a consequence of the limitations given by the Mahalanobis dis-
tances. Although learned metrics can later be used with non-linear classifiers, such as the nearest neighbors
classifier, the metrics themselves are determined by linear transformations, which, in turn, are determined by
the image of a basis in the departure space, which results in the fact that we only have the freedom to choose
the image of as much data as the dimension has the space, mapping the rest of the vectors by linearity. When
the amount of data is much larger than the space dimension this can become a limitation.

The kernel approach for follows a similar scheme to that of If we work with a dataset X =
{x1,...,zx} C RY, the idea is to send the data to a higher dimensional space, using a mapping ¢: R? —
F, where F is a Hilbert space called the feature space, and then to learn in the feature space using a
[DML] algorithm. The way we will learn a distance in the feature space will be via a continuous linear
transformation L: F — Rd/, where d’ < d (observe that L is not necessarily a matrix, since F is not
necessarily finite dimensional), which we will also denote as L € £(F,R%).

As occurs with a great inconvenience arises when sending the data to the feature space, and that
is that the problem dimension can greatly increase, and therefore the application of the algorithms can be
very expensive computationally. In addition, if we want to work in infinite dimensional feature spaces, it is
impossible to deal with the data in this case, unless we turn to the kernel trick.

We define the kernel function as the mapping K : RY x RY — R given by K(z,2') = (¢(z), p(z')).
The success of kernel functions is due to the fact that many learning algorithms only need to know the dot
products between the elements in the training set to be able to work. This will happen in the[DMI]algorithms
we will study later. We can observe, as an example, that the calculation of Euclidean distances, which is
essential in many algorithms, can be made using only the kernel function. Indeed, for z, 2’ € R?, we
have

lo(x) = eI = (d(2) = ¢(a), $() — p(a"))
(d(x), d(x)) — 2(d(x), (2")) + (6(2), $(a")) (D
= K(z,z) + K(2',2') — 2K (z,2).
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3.6 Kernel Distance Metric Learning
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Figure 5: and kernel trick. This binary classifier looks for the hyperplane that best separates both classes. Therefore, it is
highly limited when the dataset is not separable by hyperplanes, as is the case for the dataset in the upper-left image. A solution
consists of sending the data into a higher dimensional space, where data can be separated by hyperplanes, and apply the algorithm
there, as it can be seen in the remaining images. The kernel trick allows us to execute the algorithm only in terms of the dot products
of the samples in the new space, which makes it possible to work on very high dimensional spaces, or even infinite dimensional
spaces. The existence of a representer theorem for[SVYM]also allows the solution to be rewritten in terms of a vector with the size
of the number of samples.
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4 EXPERIMENTAL FRAMEWORK AND RESULTS

The next common problem for all the kernel-based algorithms is how to deal with the learned trans-
formation. Since we are trying to learn a map L € L(F, Rd'), we may not be able to write it as a matrix, and
when we can, this matrix may have dimensions that are too large. However, as L is continuous and linear,
using the Riesz representation theorem, we can rewrite L as a vector of dot products by fixed vectors, that is,

L= ({,w1),...,{-,wg)), where wr, ..., wy € F. Furthermore, for the algorithms we will study, several
representer theorems are known [70, 51} 145] 142, [71]]. These theorems allow the vectors w; to be expressed
as a linear combination of the samples in the feature space, that is, for each i € {1,...,d’}, there is a vector
ol = (af,...,al) € RN so that w; = Zévzl aéqﬁ(:vj). Consequently, we can see that
K(z1,)
Lo(z) = A : : 2
K(zn,z)

where A € My n(R) is given by A;; = 04;'..

Thanks to these theorems, we can address the problem computationally as long as we are able to calculate
the coefficients of matrix A. When transforming a new sample it will suffice to construct the previous
column matrix by evaluating the kernel function between the sample and each element in the training set,
and then multiplying A by this matrix. On a final note, when training it is useful to view the kernel map as
a matrix K € Sy(R), where K;; = K(z;,x;). A similar (in this case not necessarily square) matrix can
be constructed when testing, with all the dot products between the train and test samples. By choosing the
appropriate column of this matrix, we will be able to transform the corresponding test sample using Eq. 2]

Each technique that supports the use of kernels will use different tools for its performance, each one
based on the original algorithms. In we describe the kernelizations of some of the algorithms already
introduced, namely, LMNN| [ANMM] and [LDA

4 Experimental Framework and Results

With the algorithms introduced in the previous section, several experiments have been carried out. This
section describes these experiments and shows the results.

4.1 Description of the Experiments

For the[DMI]algorithms studied, a collection of experiments has been developed, consisting of the following
procedures.

1. Evaluation of all the algorithms capable of learning at maximum dimension, applied to the [E-NN|
classification, for different values of k.

2. Evaluation of the algorithms aimed at improving nearest centroid classifiers, applied to the corre-
sponding centroid-based classifiers.

3. Evaluation of kernel-based algorithms, experimenting with different kernels, applied to the nearest
neighbors classification.

4. Evaluation of algorithms capable of reducing dimensionality, for different dimensions, applied to
the nearest neighbors classification.

When we mention in experiment|[I|that an algorithm is “capable of learning at maximum dimension” we are
excluding those dimensionality reduction algorithms that only learn a change of axes, as is the case with both
[PCAland[ANMM] which at maximum dimension learn a transformation whose associated distance is still the
Euclidean. is kept, assuming that it will always take the maximum dimension that it is able to, which
will be the number of classes of the problem. The algorithms directed at centroid-based classifiers are also
excluded from experiment|[I} together with those based on kernels, which will be analyzed in experiments 2]
and [3] respectively.
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4.1 Description of the Experiments

The stated experiments indicate that the magnitude with which we will measure the performance of the
algorithms is the result of the k-neighbors classification, except in the case of the algorithms based on
centroids, which will use their corresponding classifier. These classifiers will be evaluated by a 10-fold
cross validation. The results obtained from the predictions on the training set will also be included, in order
to evaluate possible overfitting.

To evaluate the algorithms, we will use the implementations available in the Python library pyDML [47]. The
algorithms will be executed using their default parameters, which can be found in the pyDML documenta-
tio These default parameters have been set with standard values. The following exceptions to the default
parameters have been made:

e The algorithm will have the parameter supervised = True, as it will be used for supervised
learning.

e In the dimensionality reduction experiment (@), the algorithms will have the dimension number
parameter set according to the dimension being evaluated.

e The parameter k of and will be equal to the number of neighbors being considered
in the nearest neighbors classification.

o [LMNNI will be executed with stochastic gradient descent, instead of semidefinite programming, in
dimensionality reduction experiments, thus learning a linear transformation instead of a metric.

e The parameters n_friends and n_enemies of and [KANMM] will be equal to the number
of neighbors being considered in the nearest neighbors classification.

e The parameter n_neighbors of and will be equal to the number of neighbors
being considered in the nearest neighbors classification.

e The parameter centroids_num of will be equal to the parameter centroids_num being
considered in its corresponding classifier, NCMC_Classifier.

As for the datasets_used in the experiments, up to 34 datasets have been collected and all of them are
available in KEELH All these datasets are numeric, do not contain missing values, and are oriented to
standard classification problems. In addition, although some of the algorithms scale well with the
number of samples, others cannot deal with datasets that are too large, so it was decided that for sets with a
high number of samples, a subset of a size that all algorithms can deal with, keeping the class distribution
the same, would be selected. The characteristics of these datasets are described in Table[2] All datasets have
been min-max normalized to the interval [0, 1], feature to feature, prior to the execution of the experiments.

Finally, we describe the details of the experiments [T} [2] [3] and 4}

1. Algorithms will be evaluated with the classifiers 3-NN, 5-NN and 7-NN.

2. [NCMMI will be evaluated with the Scikit-Learn[NCMlclassifier, while[NCMC will be evaluated
with its associated classifier, available in pyDML, for two different values: 2 centroids per class and
3 centroids per class.

3. Algorithms will be evaluated with 3-NN classifier, using the following kernels: linear (Linear),
grade-2 (Poly-2) and grade-3 (Poly-3) polynomials, gaussian (RBF) and laplacian (Laplacian).
The kernel version of will be also included in the comparison. Only the smallest datasets
will be considered, so that they can be applicable to the algorithms that scale the worst with the
dimension (recall that the kernel trick forces algorithms to work in dimensions of the order of the
number of samples).

4. Algorithms will be evaluated with the classifiers 3-NN, 5-NN and 7-NN. The dimensions used are:
1,2,3,5,10,20, 30,40, 50, the maximum dimension of the dataset, and the number of classes of

"https://pydml.readthedocs.io/

YKEEL, knowledge extraction based on evolutionary learning [72]: http://www.keel.es/,

31t is implemented in Scikit-Learn: http://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.KernelPCA.html, Its theoretical details can be found in [71].
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4 EXPERIMENTAL FRAMEWORK AND RESULTS

Dataset Number of samples Number of features Number of classes
appendicitis 106 7 2
balance 625 4 3
bupa 345 6 2
cleveland 297 13 5
glass 214 9 7
hepatitis 80 19 2
ionosphere 351 33 2
iris 150 4 3
monk-2 432 6 2
newthyroid 215 5 3
sonar 208 60 2
wine 176 13 3
movement_libras 360 90 15
pima 768 8 2
vehicle 846 18 4
vowel 990 13 11
wdbc 569 30 2
wisconsin 683 9 2
banana (20 %) 1,060 2 2
digits 1,797 64 10
letter (10 %) 2,010 16 26
magic (10 %) 1,903 10 2
optdigits 1,127 64 10
page-blocks (20 %) 1,089 10 4
phoneme (20 %) 1,081 5 2
ring (20 %) 1,480 20 2
satimage (20 %) 1,289 36 7
segment (20 %) 462 19 7
spambase (10 %) 460 57 2
texture (20 %) 1,100 40 11
thyroid (20 %) 1,440 21 3
titanic 2,201 3 2
twonorm (20 %) 1,481 20 2
winequality-red 1,599 11 11

Table 2: Datasets used in the experiments.

the dataset minus 1. In this case, the following high-dimensionality datasets are selected: sonar,
movement_libras and spambase. The algorithms to be evaluated in this experiment are: [PCA

[LDAL DMLMI LMNN] and
4.2 Results

This section shows the results of the cross-validation for the different experiments. We will only show the
results of the 3-NN classifier in the experiments that use nearest neighbors classifiers in this text. The results
obtained for the remaining [k-NN|used in the experiments are available on the pyDML—Stat website, where
the results of all these experiments have been stored. The scripts used to do the experiments can also be
found on this website. We have added the average score obtained and the average ranking to the results of
the experiments[I] [2]and[3] The ranking has been made by assigning integer values between 1 and m, where

“Source code: https://github.com/jlsuarezdiaz/pyDML-Stats. The current website is located at https://
jlsuarezdiaz.github.io/software/pyDML/stats/versions/0.0.1-1/
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4.2  Results

m is the number of algorithms being compared in each experiment (adding half fractions in case of a tie),
according to the position of the algorithms over each dataset, 1 being the best algorithm, and m the worst.
The content of the different tables elaborated is described below.

e Table [3| shows the cross-validation results obtained for experiment |1} using the 3-NN score as the
evaluation measure. Some cells do not show results because the algorithm did not converge.

e Table 4] shows the results of experiment [2] and classifiers with 2 and 3 centroids per
class were used as evaluation measures. For each classifier, the Euclidean distance (Euclidean +
CLF) and the distance learning algorithm associated with the classifier (NCMML / NCMC (2 ctrd)
/ NCMC (3 ctrd)) have been evaluated.

e Table [5| shows the cross-validation results obtained on the training set for the kernel-based algo-
rithms using the 3-NN classifier. Table []shows the corresponding results obtained on the test set.

e Table[7]shows the cross-validation results for experiment ] in dataset sonar, using the classifier 3-
NN. On the left are the results for the training set, and on the right, the results for the test set. Each
row shows the results for the different dimensions evaluated. Tables[§|and [9]show the corresponding
dimensionality results over the datasets movement_libras and spambase, respectively.
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Euclidean LDA ITML DMLM]J NCA LMNN LSI DML-eig MCML LDML

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test
appendicitis 8428 .8339 .8428 .8522 .8533 .8604 .8490 .8256 .8700 .8504 .8407 .8422 .8659 .8630 .8585 .8622 .8502 .8513 .8669 .8422
balance 8049 8082 .8885 .8992 .8986 .8943 8286 .8191 .9592 .9584 .8202 .8175 9182 9280 .8947 .8945 .8816 .8737 .8874 .8895
bupa 6231 .6546 .6338 .6465 .6466 .6281 .6660 .6776 .6943 .5994 6099 .6342 .6363 .6284 .5993 .6120 .5716 5742 5826 .5854
cleveland 5570 5468 5694 5502 5488 5523 5626 .5636 .6804 .5436 5780 .5803 5518 .5722 .5896 .5829 5978 .5785 .5784 .5972
glass 6759 7015 .6235 .6231 .6453 .6549 .7092 7041 .7065 .6917 .6780 .7067 .6495 .6235 .6407 .6263 .6319 .5850 .6242 .6063
hepatitis 8236 .8325 .9402 .8609 .9002 .8815 .8821 .8894 .9569 .8325 9514 .8418 9139 9130 9125 .9176 .9250 .8829 .9458 .8547
ionosphere 8569 .8550 .8834 .8394 8771 .8862 .8752 .8605 .9534 .9084 9281 .8859 8898 .8768 .8904 .8741 9053 .8630 .8907 .8512
iris 9533 9533 9681 9533 9703 .9733 9585 9666 9755 .9666 .9481 9400 .9703 .9800 .9585 .9600 .9688 .9466 .9807 .9600
monk-2 9578 9655 9451 9561 9223 9352 9709 9724 1.000 1.000 9812 9816 1.000 1.000 .9878 .9909 .9665 .9676 .9382 .9495
newthyroid 9421 9538 .9596 9586 .9452 9398 9436 .9448 .9700 .9722 9658 .9725 9591 .9634 .9602 .9629 .9565 .9582 .9509 .9675
sonar 8317 .8370 9011 .7782 .8435 .8120 .9097 .8361 .9823 .8703 .9941 .8742 8531 .8506 .8547 .7975 .8755 .8563 .8766 .7886
wine 9606 9606 .9968 .9888 9900 9773 9812 .9662 .9956 .9882 .9956 9832 9837 .9662 .9975 .9767 .9975 9832 .9956 .9888
movement_libras  .7972 .8139 .8685 .6642 .8038 .7992 .8460 .8649 .8516 .8319 .8065 .8020 .7351 .7440 .7970 .7872 .8063 .8073 .7256 .7360
pima 7372 7396 7259 7525 7148 7149 7366 7422 .7841 7370 7290 7278 7206 7395 7174 7266 7173 7239 7285 .7240
vehicle 7077 7125 7698 7623 7625 7516 7643 7551 .8186 .7550 .6855 .6757 .6590 .6666 .6506 .6501 7398 7369 7186 .7170
vowel 9699 9787 9680 9777 9423 9535 9751 .9808 .9799 9808 .9693 9777 9436 9474 .6719 .6757 .8558 .8737 .8885 .9090
wdbc 9679 9716 9732 9664 9714 9664 9669 9648 9751 .9700 .9638 9630 9705 .9682 .9546 9507 9714 9648 .9476 9438
wisconsin 9694 9678 9663 9677 9609 9590 9695 .9678 .9723 .9648 9692 9663 9684 9722 9673 .9707 .9585 .9546 9650 .9663
banana 8543 .8555 .6504 .6469 .8536 .8556 .8550 .8565 .8553 .8583 .8574 .8583 .8535 .8517 .6718 .6878 .6282 .6102 .6268 .6319
digits 9878 9866 .9769 .9683 9798 9728 9869 .9834 .9980 .9894 .9993 9860 .9264 9102 .8269 .8168 .9734 9688 9797 .9816
letter 7174 7208 7955 7967 7161 7195 8163 .8204 .8565 .8610 .7048 7162 .5396 .5496 3191 .3214 .7600 .7534 .6217 .6372
magic 8070 .8050 .7436 .7361 .8069 .8061 .8161 .8071 .8396 .8145 7979 .7945 7946 7924 7508 .7525 7738 .7766 .7077 .6951
optdigits 9756 9777 9671 9512 9731 .9669 9770 .9761 .9956 .9759 .9986 .9840 9398 9306 .8164 .8022 .9761 .9591 .9596 .9591
page-blocks 9495 9495 9697 .9679 9614 9614 9515 9504 9637 9577 .9459 9439 - - 9515 9523 9613 9642 .9438 .9404
phoneme 7957 7992 7321 7243 7853 7770 .7960 .8002 .8044 7936 .7928 7946 7642 7668 .7361 7483 7654 7632 .7320 .7112
ring 6410 .6432 7289 7101 7290 7352 .6440 .6453 9267 .8459 .6750 .6615 8331 .8162 .7308 .7223 8315 .8223 .5634 .5648
satimage 8585 .8564 .8541 .8387 .8495 .8341 .8670 .8643 .8764 .8511 .8565 .8558 .8490 .8465 .8153 .8130 .8246 .8171 .5427 .5501
segment 8970 .9020 .9353 .9370 .9357 .9265 9071 .9081 .9451 9187 9076 .8928 .8898 .8853 .9095 .9068 .9367 .9319 .8818 .8710
spambase 8500 .8654 9215 .8871 .8801 .8766 .8635 .8525 .9391 .9154 9215 9070 .9210 9111 .9077 .9046 9176 .9047 .9229 .8982
texture 9560 .9618 .9983 .9981 9801 .9754 9864 9854 .9843 .9800 .9180 .9218 .9333 9400 .8979 .9009 .9740 9745 .8658 .8718
thyroid 9313 9319 .9375 .9450 .9397 .9402 9355 9361 .9459 .9395 .9320 .9319 .9357 .9354 9458 9485 .9377 .9320 .9587 .9583
titanic 7607 7583 7727 7804 7682 7609 7612 7587 5709 .6764 .6018 .6964 - - 7107 7331 7150 7253 7108 .7341
twonorm 9609 9595 9778 9750 9685 .9669 9612 9561 9817 .9790 .9778 9756 9776 9770 .9782 .9810 9708 .9730 .9789 .9804
winequality-red  .5808 .5865 .5657 .5733 5754 .5828 .5828 .5860 .6022 .5766 .5647 .5772 .5656 .5809 .5281 .5292 .5675 .5611 .5376 .5471
AVG RANKING 6.558 5.661 5.147 5426 5.808 5382 4926 4.544 1.705 3.661 5220 5279 6.411 5382 6.691 6.220 5.735 6279 6.794 7.161
AVG SCORE 8383 .8425 8515 .8363 .8500 .8470 .8560 .8526 .8886 .8634 .8490 .8432 .8410 .8405 .8059 .8041 .8438 .8359 .8125 .8062

Table 3: Results of cross-validation with 3-NN.
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4.2  Results

Euclidean + NCM NCMML Euclidean + NCM (2 ctrd) NCMC (2 ctrd)  Euclidean + NCM (3 ctrd)  NCMC (3 ctrd)
Train Test Train  Test Train Test Train  Test Train Test Train  Test
appendicitis .8365 8640 8512 8440 .6479 .6031 6248  .6246  .8102 7800 1557 7266
balance 7496 7475 6865  .6864 7004 6721 .8280 .8225 7160 .6654 8321 8222
bupa .5996 .6004 6628 .6407 .6270 .6058 6247  .6260  .6589 .5903 6409 5826
cleveland 5742 5377 .6296  .5516 5727 .5050 6280 .5093  .6203 4871 6435 5135
glass 5218 4862 6221 5290 .6479 .5849 5877 5372 .6427 5208 7461  .6421
hepatitis 8500 .8293 9832 .8688 .8792 .8436 9513 8373  .8986 7946 9833 8672
ionosphere 7445 71378 9313 8797 9186 .8889 9018 8764  .9062 .8750 9477 8886
iris 9318 9133 9814 9600 .9696 9666 9711 9600 .9696 .9466 9800  .9600
monk-2 .8078 .8104 7950 7923 8071 .8082 8112 .8038 .8127 7895 8457  .8237
newthyroid 9359 9352 9798 9634  .9498 .9448 9741 9725 9695 9681 9757 9629
sonar 7265 7017 9257 7641 7120 .6929 9219 7839  .8360 7437 9412 7982
wine .9687 .9495 1.000 9663  .9825 9659 9918 .9826 .9762 9432 9912 9704
movement_libras  .6358 5946 8176 7575 7777 .6764 8803 7852  .8717 7749 9420 8373
pima 7337 7279 J717 7604 7565 7382 6720  .6641 7521 7461 7322 7253
vehicle 4545 4491 7998 7797 6066 .5824 7429 7219 6537 6179 7558 7244
vowel .5367 .5070 .6689  .6383  .6087 5717 7272 .6868  .5732 .5333 7690  .7292
wdbc .9388 9367 9794 9649 9548 9385 9796 9736 9703 .9665 9810 .9701
wisconsin .9648 9648 9681 .9662 9586 9502 9655 9603 9515 .9486 9541 9487
banana 5769 5737 5571 5558 6417 .6359 5846  .5859 7516 7573 7828  .7766
digits 9066 .8981 8047 .8083  .9521 9415 .8664  .8586  .9723 9644 8893 8554
letter .5707 5341 7114 .6868 5895 5282 7251 .6902  .6601 5714 7825 7301
magic 1712 7693 7790 7751 7786 1745 7947 7861  .7600 7509 7820 7751
optdigits 9173 9104 8018 7978  .9479 9352 8542 8185 .9675 9609 8923 .8641
page-blocks .8133 8165 9636 9576 .8219 .8221 9090 9071  .8680 .8696 8966  .8953
phoneme 1417 7399 7587 7538  .7683 7667 7084 7159 7207 7149 7091 7048
ring 7780 7723 7819 7784 .8002 7601 7197 7012 .8160 7750 .6844  .6636
satimage 7868 7844 8478 .8255 8052 7921 8342 8123  .8244 7844 8362  .8007
segment .8460 .8367 9437 9037 .8596 .8452 9203 .8976  .8581 .8030 9242 8874
spambase .8874 .8827 9584 9154 8816 8763 9400 .9241  .8985 .8893 9335 9112
texture 7445 1372 9912 9781 8586 .8500 9694 9581 .9079 8900 9759 9654
thyroid 4532 4394 8163 .8082 .5724 .5558 6875  .6922 5959 5630 7469 7358
titanic 7540 7459 7825 7854  .6746 .6516 5624  .6550 .5630 6824 7279 7350
twonorm .9807 9824 9854 9797 .9799 9723 9847 9790 9787 9743 9855 9777
winequality-red  .3519 3371 4535 4359 4067 .3838 4031 3870 .3940 .3582 4024 3738
AVG RANKING 4.941 4.441 2382 2500 4.117 4.000 3411 2911 3.764 4.235 2382 20911
AVG SCORE 7468 7369 8233 .7958 .7770 7538 8014 7793 7978 7647 8344 7984

Table 4: Results of the experiments with[NCMMI]and NCMCl
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EUC KPCA KDA KANMM KDMLMIJ KLMNN

Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl
appendicitis .8428 8428 8407  .8355 .8428 .8438 .8481 .8491 8502 .8679 .8564 .8543 .8543  .8523 8763 8889 .8491 .8397 .8407 .8575 .8805 .8355 .8397 .8355 .8523 1.000
balance .8049 .8217 7770 7923 8136 .8288 .4547 .6756 .6279 7497 8838 7764 7980  .8224 .8462 .8327 .8298 9509 9696 .9374 9491 .8202 .8426 9079 .8865 .9852
bupa 6231 .6231  .6235 6222 .6231 .6560 .5623 .5677 .5758 5526 .5665 .5903  .5890  .5832 .5639 .5735 .6586 .6254  .6457 .6247 7075 .6437 6547  .6627 .6721 .9987
cleveland 5570 .5570 5537 5552 5570 5417 5301 .5424 5480 .5585 5394 5664 .5705 .5698 .5559 .5435 5615 5514 5544 5473 5499 5536 .5862  .6389 .6753 .9943
glass 6759 6759 6801  .6801 .6759 .6931 .6376  .6723  .6459 .6474 .6661 .6884 6853  .6874 .6724 .6848 6977 .6957 7024 .6702 .7342 .6790 7200 .7289 .7372 .9890
hepatitis .8236 .8236  .8083  .8111 .8236 .8403 .8318 .8416 .8471 8181 8111 .8695 .8709 .8653 .8363 .8306 .8834 .8708 .9179 .8708 .9208 .9777 1.000 1.000 1.000 1.000
ionosphere 8569 .8569 8518  .8493 8569 .8882 .6986 .6749 .6860 .7641 7429 8512 .8518 .8502 .9259 .9449 8752 .8714 .8774 .8819 .9398 8695 .9670  .9692 .9838 1.000
iris 9533 9533 9540 9548 9533 9518 .8555 .9429 9488 9562 .9362 .9459 9503 .9518 .9451 9466 9592 9503 9555 .9474 9592 .9651 9681  .9659 9681 1.000
monk-2 9578 .9503 9603 9580 .9480 9511 .7047 7119 .6995 .8320 .8459 .6877 .6365 .6252 .8996 .9964 9709 9763 9863 .9588 .9938 .9780 9873 9920 .9989 1.000
newthyroid 9421 9421 9395 9385 9421 .9488 9581 9576 9571 9638 .9612 .9390 .9400 9410 .9617 .9643 9441 9478 9421 9503 9612 9690 9700 .9731 .9741 1.000
sonar 8317 .8317 .8365 .8370 8317 .8392 .6261 .6287 .6410 .6057 .6832 .7499 7516 7521 .8263 .8450 9076 .8696  .8637 .8691 .9332 9706 1.000 1.000 1.000 1.000
wine 9606 9606 9625 9606 .9606 .9669 .9269 9169 9200 .9644 9694 .9325 .9332 9325 9844 9825 9825 .9793 .9831 .9819 .9956 .9993  1.000 1.000 1.000 1.000
movement libras 7972 7972 7866  .7805 .7972 7775 .3322 4953 4980 .7419 7544 4684 4684 4689 .7195 .7376 .8590 .8118  .8272 8124 8450 .7945 8776 .8924 9246 1.000
pima 7372 7372 7361 7377 7372 7181 .6820  .6753  .6653 .6535 .6650 7170 7144 7141 7164 7076 7359 7381 7460 .7455 .7628 7378 7453 7397 7505 .9968
banana 8543 8546  .8549  .8562 .8545 8536 .6730 .6622 .6672 .7037 .6493 8593 .8603 .8624 .7854 8167 .8554 8545 8551 .8423 .7643 .8546 .8546  .8547 8540 .9801
optdigits 9756 9756 9761 9753 9756 .9664 9186 9190 9198 9434 9386 .9379 9387 9394 9558 9543 9767 9790 9813 .9791 9857 9905 .9999  .9997 .9998 1.000
phoneme 71957 7957 7940 7935 7957 7962 .6960 7019 6929 7112 7271 7727 7726 7732 7735 7880 .7959  .7940 7945 7898 7858 8021 .7963  .7850 .7994 .9829
satimage 8585 8585 .8583  .8594 .8585 .8641 .8104 8114 8097 .8422 8452 8188 .8186 .8190 .8535 .8601 .8707 .8623  .8622 .8590 .8680 .8623  .8682  .8682 .8803 .9935
segment .8970 8970 8972  .8968 .8970 .9004 .8360  .8278  .8276 .8187 .8737 .8309 .8300 .8300 .8323 8723 9049 .8965 .8994 .8879 .9343 9244 9383 .9405 .9415 .9985
spambase .8500 .8500 .8500  .8504 .8500 .8328 .8490 .8323  .8313 .7263 7500 .8777 .8775 .8777 .8635 .8988 .8642 .8850  .8828 .8830 .9014 9369 .9495 9459 9497 .9990
twonorm 9609 .9609 9636 9648 9609 9531 9765 9758 9758 9765 9756 9798 9800 .9804 .9763 9751 9616 9642 9624 9672 9810 .9773 9847 9800 .9861 .9915
AVG RANKING 1545 1526 1552 1595 1547 14.14 2219 21.64 2150 1895 1947 17.14 16.61 1630 1552 13.66 9.690 11.71 9.880 1233 7.023 9.476 5380 5833 3.619 1.214
AVG SCORE .8360 .8365 .8336  .8338 .8360 .8387 .7337 7563 .7541 7808 .7924 7959 7949 7952 .8271 .8402 .8545 8530 .8595 .8506 .8740 .8639  .8833  .8895 .8969 .9957

LT

Table 5: Results of kernel experiments on the training set.
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EUC KPCA KDA KANMM KDMLMIJ KLMNN

Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl.

appendicitis 8339 .8339 8339 .8248 .8339 .8546 .8613 .8813 .8813 8713 .8622 .8646 .8446 .8446 8813 .8904 8339 .8248 8339 .8339 .8248 8322 .8248  .8331 .8057 .8422
balance 8082 .8383 7823  .8032 .8428 .8336 4597 .6699 .6150 .7407 .8899 .7738 .8058  .8382 .8559 .8320 .8144 9582 9711 .9374 9519 8222 8367 9118 .8736 .8464
bupa 6546 .6546  .6661  .6662 .6546 .6862 .5620 5191 5566 .5244 5389 5963  .6022 .5908 .6199 .5794 .6777 .6375 .6371 .6310 .6924 .6574 .6402 .6516 .6632 .6467
cleveland 5468 5468 5432 5535 5468 5528 5541 5449 5485 5860 .5474 5689 5653 5685 .5657 5623 5605 5682 5774 5674 5688 5736 .5744 5628 5184 5325
glass 70157015 7102 7102 7015 7117 5971  .6708  .6543 .6582 .6630 .6777 .6677 .6677 .7026 .6890 .7020 .6910 .6910 .6715 .7351 .6907 .6911  .6827 .6845 7334
hepatitis .8325 8325 8343 8343 8325 .8436 .8123 8140 .8265 .8325 .8436 .8732 8732 8732 .8575 .8575 .8894 8672 .8547 .8547 .8644 8408 .8672  .8404 8672 .8845
ionosphere 8550 .8550 .8520  .8491 .8550 .8885 .7119 .6695 6977 .7638 .7598 8517 .8489  .8461 9258 .9457 8634 8607 .8606 .8666 .9316 .8463 9081  .8910 .8969 .9396
iris 9533 9533 9533 9533 9533 9533 .8800 .9533 .9533 .9800 .9333 .9600 .9600 .9533 9533 9466 .9600 .9600 9533 9533 9533 .9533 9533 9600 .9466 .9266
monk-2 9655 9539 9677 9655 9634 9585 .7294 7203  .6880 .8176 .8385 .6877  .6529 .6435 9213 .9930 9724 9699 9862 .9654 .9908 9817 9863  .9817 .9863 1.000
newthyroid 9538 9538 9448 9448 9538 9493 9538 9538 9538 9586 .9491 9396 9396  .9396 .9580 .9627 9493 9493 9448 9491 9489 9584 9632 .9679 9632 9625
sonar .8370 8370  .8515 8515 .8370 .8560 .5812  .6540 .6431 .5948 6872 .7451 7451 7451 .8225 .8267 8461  .8556 .8560 .8651 .8753 .7653 .8701 .8408 .8704 8316
oowine 9606 .9606 9606 9606 9606 9613 9214 9047 9158 9367 .9603 9262 9318 9318 .9888 .9835 .9606 9780 9724 9777 9780 .9888 9830 .9666 .9888 9777
movement_libras  .8139 8139  .8070 .7948 8139 .8059 .3715 .5209 5187 .7631 .7600 .4969  .5006 4982 7615 .7566 .8718 .8251  .8406 .8219 .8234 8106 .8315 .8093 .8375 .7989
pima 71396 7396 7370 7318 7396 7175 .6967  .6850 7150 .6810 .6784 7238 7251 7278 7134 7109 .7383 .7396 7513 .7487 7408 7462 7461 7370 .7370 .7005
banana 8555 8555 .8546  .8546 8555 .8574 .6688  .6642 .6934 7030 .6169 .8583 8592 .8611 .7810 .8177 .8565 .8546  .8536 .8425 .7622 8536 .8508 .8565 .8565 .8414
optdigits 9777 9777 9795 9777 9777 9706 9146 9155 9164 9419 9350 9359 9359 9377 9565 .9529 9752 .9804 9787 9777 9804 9607 .9760 .9697 9671 9572
phoneme 7992 7992 7964 7973 7992 8002 .6847 7068  .7067 7132 7270 7826 7845 7854 7724 7880 .8030 .8029 .7964 .7918 .7845 .8047 .8001  .7854 7991 .7835
satimage 8564 8564 .8564 8580 .8564 .8612 .8053 .8138 .8122 .8364 .8496 .8193 8185 .8170 .8535 .8589 .8689 8580  .8580 .8527 .8559 .8473 8565  .8487 .8425 .8558
segment 9020 .9020 .9020  .9000 .9020 .9000 .8404  .8363 .8323 8112 .8625 .8346 .8346  .8326 .8227 .8687 .9098 .8768 .8840 .8738 9183 9153 9241 9224 9285 9517
spambase 8654 .8654 .8676  .8676 .8632 .8110 .8372  .8348  .8282 .7151 .7303 .8807 .8807 .8807 .8567 .8849 8546 .8740 .8784 .8826 .8827 .8914 .9027  .8981 .9049 .8999
twonorm 9595 9595 9649 9642 9595 9567 .9804 9777 9770 9797 9730 .9810 9797 9790 .9743 9682 9561 9635 9574 9675 .9702 9689 9702  .9682 .9655 .9635
AVG RANKING 1297 12.83 1321 1357 1276 11.73 2142 20.73 20.64 1792 1921 1557 1595 16.16 13.40 1223 9.738 9.642 1021 11.61 8404 11.02 7.880 1038 10.02 11.69
AVG SCORE 8415 8424 8412 8411 8430 .8443 7345 7577 7588 7814 7908 .7990  .7979 7982 .8354 .8417 8507 .8522 .8541 .8492 .8588 8433 8551 .8517 .8525 .8512

Table 6: Results of kernel experiments on the test set.

sinsay T



4 EXPERIMENTAL FRAMEWORK AND RESULTS

PCA LDA ANMM DMLMJ NCA LMNN PCA LDA ANMM DMLMJ NCA LMNN
1 5016 9011 .6965 1826 9214 7237 1 5619 7782 6770 7256 .8073 .6640
2 5891 - 7670 .8050 .9807 8782 2 6293 - 7541 7113 .8077 7593
3 7729 - 8359 .8333 9770 9513 3 7641 - 8395 7741 8265 8077
5 8215 - 8904 9033  .9759 914 5 8075 - 8263 8182 .8220 8408
10 8600 - 8958 9652 .9764 9994 10 8699 - 8751 8651 .8270 8654
20 8541 - 8872 9583 .9668 1.000 20 8601 - 8749 8844 .8699 8703
30 8456 - 8627 9508 .9706 1.000 30 8610 - 8649 8749 8653 8754
40 8365 - 8424 9460 .9839 1.000 40 8465 - 8610 8697 .8792 8613
50 8312 - 8370 9263 9850  1.000 50 8565 - 8515 8654 8558 8706

Max. Dimension 8317 . 8317 9097 9823 1.000 Max. Dimension .8370 - . .
N.Classes-1 5016 9011 6965 7826 9214 7237 N.Classes-1 5619 7782 6770 7256 8073  .6640

Table 7: Results of dimensionality reduction experiments on sonar with 3-NN (train - test)

PCA LDA ANMM DMLMJ NCA LMNN PCA LDA ANMM DMLMJ] NCA LMNN
1 1938 .3339 2414 2720 3360 2547 1 1747 3169 2675 2694 2606 2673
2 2813 5362 4597 4720 .6638 5416 2 2574 4553 4800 4476 6181 5251
3 5232 6143 .6435 .6684 7195 6900 3 5483 4978 .6680 6684 .6920 .6499
5 6873 7211 1473 7918 8188 8156 5 177 5938 7763 17747655 .8012
10 7831 .8661 .8053 8857 .8383 8485 10 .8007 .7001 8119 8711 .8017 .8220
20 7978 - 1972 8705 .8442 .8490 20 .8139 - .8106 8829 8143 .8333
30 7981 - 1978 8652 .8438 .8514 30 .8139 - .8139 .8696  .8191 .8133
40 7972 - 1975 8594 .8469 .8526 40 8139 - .8139 .8605 .8323 .8233
50 7972 - 1972 8538 .8431 .8498 50 8139 - .8139 .8627 .8310 8255

Max. Dimension .7972 - 7972 .8460 .8516 .8490  Max. Dimension .8139 - .8139 .8649 .8319 8133
N. Classes - 1 7932 .8685 .8061 8901 .8398 .8438  N.Classes - 1 8185 .6642 .8137 8811 .8274 8211

Table 8: Results of dimensionality reduction experiments on movement_libras with 3-NN (train - test)

PCA LDA ANMM DMLMJ NCA LMNN PCA LDA ANMM DMLMJ] NCA LMNN
1 8369 9215 8567 6995 .9420 9340 1 8106 .8871 8587 .6588 .9044 8872
2 8316 - 8869 7724 9420 9386 2 8261 - 8850 7173 9197 8958
3 8487 - 8973 8886 .9388 9335 3 8543 - 9090 .8807 9152 9068
5 8784 - 9079 9009 .9415 9335 5 8782 - 9049 .8700 9111 9069
10 8681 - 9222 9195 .9400 9318 10 8826 - 9198 9044 9153 9113
20 8700 - 9067 9217 .9400 9297 20 8695 - 9048 8937 9155 9005
30 .8586 - 8787 8867 .9403 9328 30 .8502 - .8675 8851 9154 9027
40 .8572 - .8654 8727 9369 9318 40 .8547 - .8567 8611 9111 9005
50 .8536 - .8560 8596 9374 9299 50 .8655 - .8633 .8569 9133 9070
Max. Dimension .8500 - .8500 8635 9391 9285  Max. Dimension .8654 .8654 8525 9154 9092

N. Classes - 1 .8369 9215 .8567 6995 .9420 9340  N. Classes - 1 .8106  .8871 .8587 .6588 .9044 .8872

Table 9: Results of dimensionality reduction experiments on spambase with 3-NN (train - test)

4.3 Analysis of Results
4.3.1 In-depth analysis

Below we will describe the main details observed in the algorithms for the different experiments carried out.

° In terms of the results obtained in the first experiment, we can clearly see that [NCA] has
obtained the best results. This is partly due to the fact that the algorithms have been evaluated
with nearest neighbors classifiers, and that[NCAlwas specifically designed to improve this classifier.
came first in most of the validations over the training set, showing its ability to fit to the data,
but it has also obtained clear victories in many of the datasets over the test set, thus also demonstrat-
ing a great capacity for generalization. We have to note that[NCA](and also other algorithms such as
[LMNN) commits substantial errors in datasets such as titanic [72]]. This is a numerical-transformed
dataset, but of a categorical nature, and with many repeated elements that may belong to different
classes. This may be causing highly discriminative algorithms such as or LMNNI not being

29



4.3 Analysis of Results

able to transform the dataset appropriately. This justifies how in certain situations other algorithms
can be more useful than those that show better behavior in general [[73]].

[LMNN]| and DMLM]] We can also see that and [LMNN] algorithms stand out, although
not as much as These algorithms are also directed at nearest neighbor classification, which
justifies these good results. seems to have a slow convergence with the projected gradient
method, and it could have achieved better results with a greater number of iterations. In fact, in the
analysis of dimensionality reduction experiments we will observe that LMNN]|performs much better
with the stochastic gradient descent method.

is another algorithm that is capable of obtaining very good results on certain datasets,
but it is penalized by many others, where it is not able to optimize enough, not even being able to
converge in several datasets.

ITML and MM and are two algorithms that, despite getting the best results in
a very small number of cases, they get decent results in most datasets, resulting in quite a stable
performance. [TML] does not learn too much from the characteristics of the training set, but is able
to generalize what has been learned in quite an effective way, being possibly the algorithm that loses
the least accuracy over the test set, with respect to the training set. On the other hand, MCML has
more learning capacity, even showing a slight overfitting, as its results are worse than those of many
algorithms on the test set.

[LDAl Another algorithm in which we can see overfitting, perhaps more clearly, is This algo-
rithm is capable of getting very good results on the training set, surpassing most of the algorithms,
but it gets noticeably worse when evaluated on the test dataset. Recall that is able to learn
only a maximum dimension equal to the number of classes of the dataset minus one. This may be
causing a loss of important information on many datasets by the projection it learns.

DML-eig| and [LDMII Finally, although and [LDMI] are able to get better results than
Euclidean distance on the training sets, on several datasets they have obtained quite low quality
results. On many of the test datasets, they are surpassed by the Euclidean distance.

Untrained [£-NNl The untrained [E-NN]or, equivalently, the classical E-NNlwith Euclidean distance,
is always outperformed by some of the distance-learned [E-NNk in the training set, and is also mostly
outperformed in the test set. This shows the benefits of learning a distance as opposed to the tradi-
tional use of the nearest neighbor classifier. The untrained [£-NNl also shows better average results
on the test set than on the training set, and is the only one among all the compared algorithms. This
may be due to the fact that, as it is not using a pretrained distance, it is unlikely to overfit, although
according to the results there is a lot of room for improvement in both training and test sets for this
basic version.

and If we analyze the results of the centroid-based classifiers, we can easily
observe that in the vast majority of cases the classifier has worked much better after learning the
distance with its associated learning algorithm, than it has by using the Euclidean distance. It
can also be observed that the results are subject to great variability, depending on the number of
centroids chosen. This shows that the choice of an adequate number of centroids that adapt well
to the disposition of the different classes is fundamental to achieve successful learning with these
algorithms.

Kernel algorithms. Focusing now on the kernel-based algorithms, it is interesting to note how
[KLMNN] with laplacian kernel is able to adjust as much as possible to the data, getting a 100 %
success rate on most of the datasets. This success rate is not transferred, in general, to the test data,
showing that this algorithm overfits with laplacian kernel. We can also observe that the best results
are distributed in a varied way among the different evaluated options. The choice of a suitable
kernel that fits well with the disposition of the data is decisive for the performance of kernel-based
algorithms.

Dimensionality reduction experiments. To conclude our analysis, dimensionality experiments
allow us to observe that the best results are not always obtained when considering the maximum
dimension. This may be due to the fact that the algorithms are able to denoise the data, ensuring
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5 PROSPECTS AND CHALLENGES IN DISTANCE METRIC LEARNING

that the classifier used later does not overfit. We also see that we cannot reduce the dimension as
much as we want, because at some point we start losing information, which happens in many cases
with which is its great limitation. In general, we can observe that all algorithms improve
their results by reducing dimensionality until a certain value, although the best results are provided
by LMNN] and The results obtained by LMNN] open the possibility of using this
algorithm with stochastic gradient descent, instead of the semidefinite programming algorithm used
in the first experiment, since the results it provides are quite good. Although these algorithms
have obtained better results, the use of and [LDAI (as long as the dimension allows it) is
important for the estimation of an adequate dimension, since they are much more efficient than the
first ones. As for[PCA] it gets the worst results in low dimensions, probably due to not considering
the information of the labels.

4.3.2 Global analysis

In order to complete the verbal analysis, we have developed a series of Bayesian statistical tests to assess
the extent to which the performance of the different algorithms analyzed outperforms the other algorithms.
To do this, we have elaborated several pairwise Bayesian sign tests [46l]. In these tests, we will consider
the differences between the obtained scores of two algorithms, assuming that their prior distribution is a
Dirichlet Process [74]], defined by a prior strength s = 1 and a prior pseudo-observation zg = 0. After
considering the score observations obtained for each dataset, we obtain a posterior distribution which gives
us the probabilities that one algorithm outperforms the other. We also introduce a rope (region of practically
equivalent) region, in which we consider the algorithms to have equivalent performance. We have designated
the rope region to be the one where the score differences are in the interval [—0.01, 0.01]. In summary, from
the posterior distribution we obtain three probabilities: the probability that the first algorithm outperforms
the second, the probability that the second algorithm outperforms the first one, and the probability that
both algorithms are equivalent. These probabilities can be visualized in a simplex plot for a sample of the
posterior distribution, in which a greater tendency of the points towards one of the regions will represent a
greater probability.

To do the Bayesian sign tests, we have used the R package rNPBST [[75]. In Figure [l we pairwise compare
some of the algorithms that seem to have better performance in experiment [I| with 3-NN (NCA| [DMLM]
and LMNN) with the results of the 3-NN classifier for Euclidean distance. In the comparison made between
Euclidean distance and [NCA] we can clearly see that the points are concentrated close to the [NCA, rope]
segment. This shows us that Euclidean distance is unlikely to outperform and there is also a high
probability for to outperform Euclidean distance, since a big concentration of points is in the
region. We obtain similar conclusions for[DMLMIJ against Euclidean distance, although in this case, despite
the fact that Euclidean distance is still unlikely to win, there is a greater concentration of points in the
rope region. In the comparison made between [LMNN]| and Euclidean distance, we see a more centered
concentration of points, that is slightly weighted towards the region. In the comparisons made
between the[DMILalgorithms we observe the points weighted to the [NCA, rope] segment, which concludes
the difficulty of outperforming and between and LMNN] we can see a pretty level playing
field that is slightly biased to the algorithm.

The outperforming of Euclidean distance is even clearer in the results from experiment[2] For these algo-
rithms, we can clearly observe that the points are concentrated in the region corresponding to the nearest
centroid metric learning algorithm, as shown in Figure [/} We have elaborated more pairwise Bayesian sign
tests for the rest of the algorithms in experiment (Il The results of these tests can also be found on the
pyDML-Stats Websiteﬂ

5 Prospects and Challenges in Distance Metric Learning

Throughout this tutorial we have seen what DML consists of and how it has traditionally been applied in
machine learning. However, the development of technology in recent years has given rise to new problems
that cannot be adequately addressed from the point of view of classic machine learning. In the same way,

31



rope rope rope

2,

NCA & ® & 5 § Euclid DMLMJ & ® & & $ Euclid LMNN & ® & & $ Euclid
08
rope

06
2
2 0,467 0,467
204
]
o
a

0,2

0,0

Euclidean NCA rope
Regions
0,8 0,8
0,695 rope

Posteriors
=) =)
ES o
Posteriors
=) =)
ES o

L
]
2
]

&

k 0,438
03!
0,267
YT
0,0 . 0,0 LMNN

52
DMLMJ Euclidean rope DMLMJ NCA rope
Regions Regions

08 08 08

0,524
0,352
0,267
0,238
. .
0,0 0,0 0,0

Euclidean LMNN rope LMNN NCA rope DMLMJ LMNN rope
Regions Regions Regions

o
o
o
o
.
o

0,495

Posteriors
o
s
Posteriors
o
e
Posteriors
Si
-

o
N
o
N
o
N
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algorithm against the same classifier with Euclidean distance. The results are shown for nearest class mean classifier (left), nearest
class with 2 centroids (center) and nearest class with 3 centroids (right).

this technological development has led to new tools that are very useful when facing new problems, as well
as allowing better results to be obtained with the more traditional problems.

Focusing on both the new problems and the new tools are generating new prospects where in which
applying DML could be of interest, and as well as generating new challenges in the design and application
of DML Below we will describe some of the most outstanding ones.

5.1 Prospects of Distance Metric Learning in Machine Learning

Nowadays there are many fields where the further development of DML might be of interest. On the one
hand, the large volumes of data that are usually being handled today make it necessary to adapt or design
new algorithms that can work properly with both high-dimensional data and huge amounts of examples.
Similarly, new problems are arising, which make it necessary to reconsider the algorithms so that they can
handle these problems in an appropriate way. On the other hand, many of the tools provided by machine
learning, from the classical ones to the most modern ones, can be used in line with [DMI] to achieve better
results. We outline these prospects below.

e Hybridization with feature selection techniques to solve high dimensional data problems.
[DML is of great interest in many real problems in high dimensionality, such as face recognition,
where it is very useful to be able to measure the similarity between different images [30]. When
we work with datasets of even greater dimensionality, the treatment of distances can become too
expensive, since it would be necessary to store matrices of very large dimensions. In these situ-
ations, it may be of interest to combine [DML] with feature selection techniques prepared for very
high dimensional data 26].

e Big Data solutions. The problem of learning when the amount of data we have is huge and het-
erogeneous is one of the challenges of machine learning nowadays [77]. In the case of the DML
algorithms, although many of them, especially those based on gradient descent, are quite slow and
do not scale well with the number of samples, they can be largely parallelized in both matrix com-
putations and gradient descent batches. As a result, can be extended to handle Big Data by
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developing specialized algorithms and integrating them with frameworks such as Spark [78] and
Cloud Computing architectures [79].

e Application of distance metric learning to singular problems. In this paper, we have focused
on for common problems, like standard classification and dimensionality reduction, and we
have also mentioned its applications for clustering and semi-supervised learning. However,
can be useful in a wide variety of learning tasks [80]], and can be carried out either by designing
new algorithms or by adapting known algorithms from standard problems to these tasks. In recent
years, several proposals have been made in problems like regression [[81]], multi-dimensional
classification [82], ordinal classification [83]], multi-output learning [84]] and even transfer learning
(85 [13]).

e Hybridization with shallow learning techniques. Over the years, some distance-based algorithms,
or some of their ideas or foundations, have been combined with other algorithms in order to improve
their learning capabilities in certain problems. For example, the concept of nearest-neighbors has
been combined with classifiers such as Naive-Bayes, obtaining a Naive-Bayes classifier whose fea-
ture distributions are determined by the nearest neighbors of each class [86]; with neural networks,
to find the best neural network architecture [87]]; with random forests, by exploiting the relationship
between voting points and potential nearest neighbors [88]]; with ensemble methods, like boot-
strap [89} 190]; with support vector machines, training them locally in neighborhoods [91]]; or with
rule-learning algorithms, obtaining the so-called nested generalized exemplar algorithms [92]]. The
distances used in these combinations of algorithms can condition their performance, so designing
appropriate distance learning algorithms for each of these tasks can help achieve good results. Stay-
ing on this subject, another option is to hybridize directly[DMLI with other techniques, like ensemble
learning [93]].

e Hybridization with deep learning techniques. In recent years, machine learning has experienced
great popularity thanks to the development of deep learning, which is capable of obtaining very
good results in different learning problems [94]]. As in the previous case, it is possible to combine
distance-based algorithms or their foundations with deep learning techniques to improve their learn-
ing capabilities. For instance, Papernot and McDaniel [95]] use the k-nearest neighbors classifier to
provide interpretability and robustness to deep neural networks. Another prospect that has gained
popularity in recent years is based on the use of neural networks to learn distances, which is being
referred to as deep metric learning [96,197, 198,199, |100]. Deep learning is likely to play an important
role in the future of machine learning, and thus its combination with may lead to interesting
advances in both fields.

e Other approaches for the concept of distance. Most of the current theory focus on Maha-
lanobis distances. However, some articles open a door to learning about other possible distances,
such as local Mahalanobis distances, that lead to a multi-metric learning [38]], or approaches beyond
the Mahalanobis theory [101}[102]]. The deep metric learning approach discussed above is another
way of handling a wider range of distances. By developing new approaches, we will have a greater
variety of distances to learn, and thus have a greater chance of success.

5.2 Challenges in Distance Metric Learning

In addition to the numerous action horizons, [DML] presents several challenges in terms of the design of its
algorithms, which can lead to substantial improvements. We describe these challenges below.

e Non-linear distance metric learning. As we have already mentioned, since learning a Mahalanobis
distance is equivalent to learning a linear map, there are many problems where these distances are
not able to capture the inherent non-linearity of the data. Although the non-linearity of a subsequent
learning algorithm, such as the nearest neighbors classifier, may mitigate this fact, that algorithm
could benefit much more from a distance capable of capturing the non-linearity of the dataset. In
this sense, we have already seen how the kernelization of algorithms can be applied to fit non-
linear data. Extending the kernel trick to other algorithms besides those presented, by searching for
suitable parameterizations and representer theorems, is another possible task to carry out. Another
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possibility for non-linear DMLl s to adapt classical objective functions so that they can work with
non-linear distances, such as the x2 histogram distance, or with non-linear transformations of the
data learned by another algorithm, such as gradient boosting [[103]].

e Multi-linear distance metric learning. In learning problems where the data are images or videos,
the traditional vector representation may not be the most appropriate to fit the data properly. Vector
representation does not allow, for example, for the consideration of neighborhood relationships
between pixels in an image. It is therefore better to consider images as matrices, or more generally,
as multi-linear mappings or fensors. Some [DML] algorithms can be adapted so that they can learn
distances in tensor spaces [[104} [36| [105]], which will be more suitable for similarity learning in
datasets that support this representation. The development or extension of techniques for multi-
linear is a challenge that has many applications in a field such as computer vision, where
[DMIL has been shown to be quite useful [17,[19} 21} 167].

e Other optimization mechanisms. The algorithms we have studied optimize their objective func-
tions by applying gradient descent methods. However, the possibilities in terms of optimization
mechanisms are very broad, and choosing the most appropriate method can contribute to achiev-
ing better values in the objective functions. In addition, the consideration of different optimization
methods may lead to the design of new objective functions that may be appropriate for new prob-
lems or approaches and that cannot be optimized by classical gradient methods. In this way, we
have studied several differentiable objective functions in this tutorial, unconstrained or with convex
constraints, but for those non-convex functions the gradient descent methods (even the stochastic
version) cannot guarantee a convergence to the global optimum. If we wanted to consider functions
with even worse analytical characteristics or constraints, such as non-differentiability or integer
constraints, we could not even use this type of method. For the non-convex and differentiable case,
we are still able to use the information of the derivatives of the objective function, and some re-
finements of the classic gradient methods, such as AdaDelta, RMSprop or Adam have shown good
performance in this type of problem [106]. In the most general case, we are only able to afford to
evaluate the objective function, and sometimes not a very high number of times, due to its complex-
ity. This general case is usually called black-box optimization. To optimize these functions, a wide
variety of proposals have been made. If we cannot afford to evaluate the objective function many
times, Bayesian optimization may be an interesting alternative [[107]. If the objective function is
not so complex, evolutionary algorithms can provide us with a great capability of exploration in the
search space. Their repertoire is much broader and includes techniques such as simulated annealing,
particle swarm optimization or response surface methods, among others [108], thus many tools are
available to address the most diverse optimization problems. These heuristics can also be used over
differentiable optimization problems, and sometimes they can even outperform gradient methods,
thanks to their greater ability to escape from local optima [[109]. The evolutionary approach has
been explored recently in several DML] problems [110} [111].

6 Conclusions

In this tutorial we have studied the concept of distance metric learning, showing what it is, what its appli-
cations are, how to design its algorithms, and the theoretical foundations of this discipline. We have also
studied some of the most popular algorithms in this field and their theoretical foundations, and explained
different resolution techniques.

In order to understand the theoretical foundations of distance metric learning and its algorithms, it was nec-
essary to delve into three different mathematical theories: convex analysis, matrix analysis and information
theory. Convex analysis made it possible to present many of the optimization problems studied in the al-
gorithms, along with some methods for solving them. Matrix analysis provided many useful tools to help
understand this discipline, from how to parameterize Mahalanobis distances, to the optimization with eigen-
vectors, going through the most basic algorithm of semidefinite programming. Finally, information theory
has motivated several of the algorithms we have studied.

35



In addition, several experiments have been developed that have allowed for the evaluation of the perfor-
mance of the algorithms analyzed in this study. The results of these experiments have allowed us to observe
how algorithms such as [DMIMI] and especially NCAlcan considerably improve the nearest neigh-
bors classification, and how centroid-based distance learning algorithms also improve their corresponding
classifiers. We have also seen the wide variety of possibilities offered by kernel-based algorithms, and the
advantages that an appropriate reduction of the dimensionality of the datasets can offer.

A Glossary of terms

ANMM Average Neighborhood Margin Maximization

DML Distance Metric Learning

DML-eig Distance Metric Learning with eigenvalue optimization
DMLMJ Distance Metric Learning through the Maximization of the Jeffrey divergence
ITML Information Theoretic Metric Learning

KANMM Kernel Average Neighborhood Margin Maximization
KDA Kernel Discriminant Analysis

KDMLMJ Kernel Distance Metric Learning through the Maximization of the Jeffrey divergence
KLMNN Kernel Large Margin Nearest Neighbors

k-NN k-Nearest Neighbors

LDA Linear Discriminant Analysis

LDML Logistic Discriminant Metric Learning

LMNN Large Margin Nearest Neighbors

LSI Learning with Side Information

MCML Maximally Collapsing Metric Learning

MMC Mahalanobis Metric for Clustering

NCA Neighborhood Components Analysis

NCM Nearest Class Mean

NCMC Nearest Class with Multiple Centroids

NCMML Nearest Class Mean Metric Learning

PCA Principal Components Analysis

SVM Support Vector Machines

B Mathematical Background

In this appendix we will study three mathematical blocks that make up the foundations of distance metric
learning: convex analysis, matrix analysis and information theory.

B.1 Convex Analysis

Convex analysis is a fundamental field of study for many optimization problems. This field studies the
convex sets, functions and problems. Convex functions have very useful properties in optimization tasks,
and allow tools to be built to solve numerous types of convex optimization problems.

We will highlight some results of convex analysis in our work. First, we will show some important geometric
properties of convex sets, such as the convex projection theorem, and then we will analyze some optimization
methods that will be used later.

We start with the geometry of convex sets. We will work in the euclidean d-dimensional space, R?, where
we note the dot product as (-, -).
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B MATHEMATICAL BACKGROUND

B.1.1 Convex Set Results

Recall that convex sets are those for which any segment between two points in the set remains within the
set, that is, a set K C R? is convex iff [z,y] = {(1 — Nz + M\y: A € [0,1]} C K, for every z,y € K.
An important result from convex sets states that, at every point on the border of a closed set, we can setup a
hyperplane so that the convex set and the hyperplane intersect only at the boundary of the set, and the whole
set lies on one side of the hyperplane. Furthermore, this property characterizes the closed convex sets with
non empty interiors. This result is known as the supporting hyperplane theorem and we discuss it below.

Definition 3. Let 7: RY — R be a linear map, « € R and P = {z € R?: T(z) = a} be an hyperplane.
Associated with P, we define Pt = {z € R%: T'(z) > a} and P~ = {x € RY: T(2) < a}.

We say that P is a supporting hyperplane for the set K C R% if PN K # (), and either K C Pt or
K C P~. We refer to supporting half-space as the half-space that contains K, between P™ and P~.

Theorem 1 (Supporting hyperplane theorem).

1. If K C R%is a closed convex set, then for each xo € OK there is a supporting hyperplane P for K
so that xy € P.

2. Every proper closed convex set in R? is the intersection of all its supporting half-spaces.

3. Let K C R? be a closed set with non empty interior. Then, K is convex if and only if for every
x € OK there is a supporting hyperplane P for K with x € P.

Proof of this result can be found in Dacorogna [[112] (chap. 2, theorem 2.7). We will use this theorem in the
following results. The following property is fundamental to be able to make sense of the optimization tools
shown in this paper. We will see that, given a closed convex set and a point in R%, we can find a nearest point
to the given point in the convex set, and it is unique, that is, there is a projection for the given point onto the
convex set. In other words, projections onto convex sets are well defined. We prove this result below. We
will see that projections will help us to deal with constrained convex problems.

Theorem 2 (Convex projection). Let K C R be a non empty closed convex set. Then, for every x € R¢
there is a single point xo € K with d(z, K) = d(x, xo), where we have defined the distance to the set K by

d(z,K) = inf{d(z,y): y € K}.

The point xq is called the projection of x onto K and it is usually denoted by Pk (x). The function
Pr: R? — K given by the mapping © +— Pr () is therefore well defined and it is called the projec-
tion onto K. In addition, for each x € R%\ K, the half-space {y € R?*: (x — Py (z),y — Pk (z)) < 0} is
a supporting half-space for K in Pg(x).

Proof. First, we will prove the existence of a point in K in which the distance to K is achieved. In fact, this
is true for every closed and not necessarily convex set. Let 2 € R%. As K is closed, we can choose R > 0
so that K N B(xz, R) is a compact and non empty set. We consider the distance to  in this set, that is, we
define the map d,: K N B(z, R) — R} by d,(y) = d(z,y) = ||z — y||. d, is continuous and it is defined
over a compact set, so it attains a minimum at a point zo € K N B(z, R).

If we now take y € K N B(z, R), we get d(x,y) = dx(y) > dx(z0) = d(z,70). On the other hand, if we
take y € K \ B(z, R), we get d(x,y) > r > d(x,zo). We have obtained that d(z,y) > d(x,x) for every
y € K, and therefore d(x, K) > d(x, xo). The remaining inequality is clear, since x¢ € K, that is, x is the
point we were looking for.

We will see now the uniqueness of the point found. Suppose that z1,z5 € K verify that d(z,z;) =
d(z, K) = d(z,z2). We define x( as the half point in the segment [z, z2]. We have that zy € K, since K
is convex. Let us note that

1
(x1 — x9,x — x0) = (1 — T2, — = (1 + X2)) = 5(3:1 — 22,2 — 1 — T2).

2
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If we substitute 1 — 29 = (x — x2) — (r — 1) and 22 — 21 — x9 = (xz — z2) + (x — x1), we obtain

@yﬂ@w—x@:%«x—@y—@—xﬁxz—@y+@—xm
= Sz~ zal* ~ I}z — m1])
= %(d(a:, K)? —d(z,K)?) =0.

Therefore, the vectors x1 — x2 and x — x( are orthogonal, and consequently so are x — xg y g — T2 =
(x1 — x2)/2. Applying Pythagorean theorem we have

d(z,K)* = o = 2|* = llo = wol® + |20 — 22| > ||z — zo]* > d(x, K)?,

that is, the equality holds in the previous inequality. In particular, we obtain that ||zo — 2> = 0, and then
xo = x2. Since o was the half point of [z, zo] we conclude that 1 = x9, proving the uniqueness.

Finally we will prove the last assertion in the theorem. Let z € R?\ K and suppose that there exists y € K
with (z — Pk (z),y — Px(x)) > 0. Since K is convex, the segment [y, Px (z)] is contained in K, and
therefore we have y; = Pg(x) + t(y — Pk (z)) € K, forevery t € [0, 1]. We define the map f: [0,1] — R
by

Ft) = llye — @l* = || Px(x) — x + t(y — Pr (@)
= || Pr () —a|* + 2t(Pg (2) — 2,y — P (2)) + t*ly — Prc ()|
f is a polynomial in ¢, so it is differentiable, and
1'(0) = 2(Px(2) — 2,y — Px(2)) = —2(z — Px(a),y — P(x)) < 0.

Last expression implies that f is strictly decreasing in a neighborhood of 0, that is, there exists € > 0 so that
lye — x||? < |lyo — z||?> = || Px(z) — z||?, for 0 < t < &, which results in a contradiction, since P ()
minimizes the distance to x in K and the points y; lie on K.

O

B.1.2 Optimization Methods

In the following paragraphs we will discuss some of the optimization methods that we will use in distance
metric learning algorithms. These algorithms will generally try to optimize (we will focus on minimizing
without loss of generality) differentiable functions without constraints, or convex functions subject to convex
constraints. For the first case, it is well known that the gradient of a differentiable function has the direction
of the maximum slope in the function graph, thus by advancing small quantities in the negative gradient
direction we manage to reduce the value of our objective function. This iterative method is usually called
the gradient descent method. The adaptation rule for this method, for a differentiable function f: R — R,
is given by x411 = x; —nV f(x¢), t € NU{0}, where 7 is the quantity we advance in the negative gradient
direction, and it is called the learning rate. This value can be either constant or adapted according to the
evaluations of the objective function. For the first option, the choice of a value of 7 that is too big or too
small can lead to poor results. The second option needs to evaluate the objective function at each iteration,
which can be computationally expensive.

Foundations of gradient descent are based on the following ideas. Let us consider an objective function
f:RY - R,z € R¥and v € R?\ {0} an arbitrary direction. We also consider the function g: R — R
given by g(n) = f(z + nv/||v||). The rate of change or directional derivative of f at x in the direction of v
is given by ¢’(0) = (V f(x),v)/||v||. Applying Cauchy-Schwarz inequality, we have

“IV @)l < H1)1|<Vf(fc),v> < VS,

and equality in the left inequality holds when v = —V f(x), thus obtaining the maximum descent rate. In
the same way, the maximum ascent rate is achieved when v = V f(x).
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If gradient at x is non zero and we consider the first order Taylor approximation with the points z and
x —nV f(x), we have that

fla =nVf(@) = f(z) = nlVf(@)|* +o(n),
with lim, g [o(n)|/n = 0, then there is € > 0 so that if 0 < § < €, we have

) s,

and therefore

o= 0V S(a)) = ) =3 (<I9S + %) < SV + 197 =

thus f(z — dVf(x)) < f(x) for 0 < § < &, so we are guaranteed that for an accurate learning rate
the gradient method performs a descent at each iteration. Let us observe that the gradient direction is
not the only valid descent direction, but the above calculations are still true for any direction v € R?
with (V f(x),v) < 0. The choice of different descent directions, even if they are not the maximum slope
direction, may provide better results in certain situations.

Now we will discuss the constrained convex optimization problems. When we work with constrained
problems, gradient descent method cannot be applied directly, as the gradient descent adaptation rule,
2441 = x — NV f(xy), does not guarantee ;41 to be a feasible point, that is, a point that fulfills all
the constraints. When the optimization problem is convex, the set determined by the constraints is closed
and convex, so we can take projections onto this feasible set. The projected gradient method tries to fix the
gradient descent problem by adding a projection onto the feasible set in the gradient descent adaptation rule,
that is, if C' is the feasible set, and P is the projection onto this set, the projected gradient adaptation rule
becomes 411 = Po(xy — nV f(x¢)). To confirm that this method is successful, we have to show that the
direction v = Pg(x — nV f(x)) — x is a descent direction, which is attained, thanks to the reasons given
above, if (V f(z),v) < 0.

We name 21 = z — nV f(x). Then, v = Po(z1) — z. Note that (V f(x),v) <0 < (z1 —x, Po(z1) —
x) = —n(Vf(z),v) > 0. If gradient is not null and z; € C, we get (x1 — x, Po(x1) —x) = (x1 — x, 21 —
z) = ||z1—=|> > 0. If 71 ¢ C, then the convex projection theorem (Theorem [2) ensures that the half-space
H = {y e R (x1 — Po(z1),y — Po(x1)) < 0} contains C. In particular,

0> (x1 — Po(z1), — Po(x1)) = (21 — 2,2 — Po(x1)) + ||z — Po(z)|*
Consequently, (z1 — x, Po(x1) — ) > ||z — Po(x1)]|> > 0. In addition, equality holds if and only if
x = Pg(x1), in which case the iterative algorithm will have converged (observe that this happens when
x € 0C and the gradient descent direction points out of C' and orthogonally to the supporting hyperplane).
Therefore, as long as the projected gradient iterations produce changes in the obtained points, an appropriate
learning rate will ensure the descent in the objective function. Figure [8| visually compares the gradient
descent method and the projected gradient method.

Another problem we can find when trying to optimize constrained convex problems is that we may have
multiple constraints, but we only know the projection onto each single restriction, without knowing the
projection onto the intersection, which makes up the feasible set. In these cases, a popular method to find
a point in the intersection is the so-called iterated projections method, which consists of taking successive
projections onto each constraint set, and repeating this procedure cyclically. We will analyze the simplest
case, that is, let us suppose that we have a feasible set determined by two convex constraints. The following
theorem states that, if the intersection of the sets determined by each constraint is not empty, then the
sequence of iterated projections converge to a point in the intersection.

Theorem 3 (Convergence of the iterated projections method). Let C, D C R? be closed convex sets, and let
Pc, Pp: RY — R? be the projections onto C and D, respectively. Suppose that o € C and we build the
sequences {xy} and {y,} given by y,, = Pp(xy,) and 11 = Po(yn), for eachn € N U {0}.

Then, if C N D # (), both sequences converge to a point x* € C'N D.
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B.1 Convex Analysis

Figure 8: Orange shaded areas represent contour lines of the function f(z,y) = 2(z + y)? + 2y* for natural values between 0
and 10. The red path shows the behaviour of the unconstrained gradient descent method applied to f. The blue path shows the
behaviour of the projected gradient descent, with the blue ellipse as the feasible set. In both cases we observe that we are obtaining
descent directions.

Proof of this result is provided by Boyd and Dattorro [113]]. The extension to the general case can be made
following a similar argument, and it is discussed by Bregman [114]. That is why the general case is also
called the Bregman projections method. Figure 9] shows a graphical example of the iterated projections
method.

Figure 9: The iterated projections method. The second image shows how the algorithm works if the sets do not intersect.

To conclude this section, we need to make a last remark. Recall that a convex and differentiable function
f: ©Q — R defined on a convex open set verifies that f(z) > (V f(zo),z — x¢), for every x, xp € Q. Let
xo € Q be fix. When we work with convex but non differentiable functions, there are still vectors v € R
for which f(x) > f(xg)+ (v, z — xg), for every z € 2. This is a consequence of the supporting hyperplane
theorem applied to the epigraph of f (recall that f is convex iff its epigraph is too). In this case we say that
v is a subgradient of f at x and we note it as f(xg), or df(xo)/0z, if we need to specify the variable.
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Subgradients and gradients have similar behaviours, although we cannot always guarantee that subgradients
are descent directions. Subgradient methods work in a similar way to gradient methods, replacing the
gradient in the adaptation rule by a subgradient. In subgradient methods it is useful to keep track of the
best value obtained, as some subgradients may not be descent directions. In the situations we will handle,
subgradient computations are easy: if f is differentiable at x, then V f(x() is a subgradient (in fact, this is
the only subgradient at xg); if f is a maximum of convex differentiable functions, then a subgradient at
is the gradient of any of the differentiable functions that attains the maximum at .

B.2 Matrix Analysis

In distance metric learning, matrices will play a key role, as they will be the structure over which distances
will be defined and over which the optimization methods studied in the previous section will be applied.
Within the set of all matrices, positive semidefinite matrices will be of even greater importance, so, in order
to better understand the learning problems we will be dealing with, it will be necessary to delve into some
of their numerous properties.

This section examines in depth the study of matrices, on a basis of the best-known results of diagonalization
in linear algebra. From this basis, we will show how to give the set of matrices a Hilbert space structure,
in order to be able to apply the convexity results and optimization methods from the previous chapter. In
particular, we will be interested in how to obtain projections onto the set of positive semidefinite matrices.
Also related to positive semidefinite matrices, we will present several results regarding decomposition that
we will need in future sections. Finally, we will study some matrix optimization problems that can be solved
via eigenvectors. Table[I0]shows the notations we will use for matrices. We will restrict the study to the real
case, since the problem we will deal with is in real variables, although many of the results we will see can
be extended to the complex case.

Notation Concept
Maxq(R)  Matrices of order d’ X d.
My(R)  Square matrices of orden d.

ij
A j (resp. A;)

The value of the matrix A at the i-th row and j-th column.
The j-th column (resp. the i-th row) of the matrix A.

v=(v1,...,vq) A vectorinR% Vectors will be treated as column matrices.
AT The transpose of the matrix A.
Sq(R)  Symmetric matrices of order d.
GL4(R) Invertible matrices of order d.
r(A),tr(A),det(A) The rank, trace and determinant of the matrix A.
O4(R)  Orthogonal matrices of order d.
Sa(R){  Positive semidefinite matrices of order d.
Sq(R)™  Positive definite matrices of order d.
Sa(R)y  Negative semidefinite matrices of order d.
S4(R)~ Negative definite matrices of order d.
Table 10: Matrices notations.
B.2.1 Matrices as a Hilbert Space. Projections

Over the set of matrices we have defined a sum operation, and a matrix product, between matrices of orders
d x r and r X n. When working with square matrices, this sum and product give the matrix set a non-
conmutative ring structure. These operations only allow us to obtain algebraic properties of matrices, but
we also want to obtain geometric and topological properties. That is why we need to introduce a matrix inner
product. We will introduce this inner product in the simplest way, that is, we will view matrices as vectors
where we add the matrix rows one after the other, and we will consider the usual vector inner product. This
matrix product is known as Frobenius inner product.
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Definition 4. We define the Frobenius inner product over the matrices space of order d’ x d as the mapping
<-, >F Mdlxd(]R) X Mdlxd(R) —R given by
d d
<A, B>F = Z Z AijBij = tI‘(ATB).

i=1 j=1

We define the Frobenius norm over the matrices space of order d’ x d as the mapping || - || 7: Mg xq(R) —
RS given by

[AllF = V(A 4) =

Frobenius norm is therefore identical to the euclidean norm in R¥ %4 identifying matrices with vectors as
mentioned before. Viewing this norm as a matrix norm, we have to remark that Frobenius norm is sub-
multiplicative, but it is not induced by any vector norm. Some interesting properties about Frobenius norm
can be deduced from the definition. They are listed below.

Proposition 1.

1. Foreach A € Mywq(R), ||A|lr = ||AT]| .
)

2. Foreach A € Mgxq(R), |Allr = /tr(AAT)
5. IfU € O4(R),V € Op(R) and A € Mya(R), then | AU[p = [V Allr = VAU p = | All
4. If A € Sy4(R), then || A||% = Z?Zl A2, where A1, ..., \g are the eigenvalues of A.

With Frobenius inner product we can apply the convex analysis theory studied in the previous section. The
positive semidefinite matrix set has a convex cone structure, that is, it is closed under non-negative linear

combinations. That is why Sd(R)ar is usually called the positive semidefinite cone. Under the topology

induced by symmetric matrices, we can also see that Sd(]R)ar is closed, as it is the intersection of closed

sets:
Sa(R)§ = {M € Sg(R): e" Mz > 0Vz e R} = (| {M € Sy(R): 2" Mz > 0},
z€ERI

So we understand, in particular, that Sd(]R)g is a closed convex set over symmetric matrices, and thus we

have a well-defined projection onto the positive semidefinite cone. This property is very important for many
of the optimization problems we will study, since they will try to optimize functions defined over the positive
semidefinite cone. Here, the projected gradient descent method will be of great use, thus constituting one
of the most basic algorithms of the paradigm of semidefinite programming. We can calculate the projection
onto the positive semidefinite cone explicitly, as we will see below.

Definition 5. Let ¥ € My(R) be a diagonal matrix, ¥ = diag(o1, ..., 04). We define the positive part of
Y as X1 = diag(o},...,0)), where 0;" = max{o;,0}. In a similar way, we define its negative part as
¥~ =diag(oy,...,0, ), where 0, = max{—o;,0}.

Let A € Sy(R) and let A = UDUT be a spectral decomposition of A. We define the positive part of A as
AT =UD*U”. In a similar way we define its negative part as A~ = UD~UT.

Theorem 4 (Semidefinite projection). Let A € Sy(R). Then, AT is the projection of A onto the positive
semidefinite cone.

This result has been proven by Higham [115], and is extended easily to project any square matrix onto
the positive semidefinite cone, as we show below, although the most interesting case is that mentioned
previously.

Corollary 1. Let A € My(R). Then, the projection of A onto the positive semidefinite cone is given by
((A+ ATy /2)+,
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B.2.2 Decomposition Theorems

The positive semidefinite cone allows many of the concepts and properties that we already know about the
non negative real numbers to be generalized. For example, we can similarly define concepts as the square
roots, and modules or absolute values. These concepts play an important role in elaborating numerous
decomposition theorems that involve positive semidefinite matrices. We will use these tools in order to
prove a specific decomposition theorem that will motivate the ways of modeling the distance metric learning
problem. The statement of this theorem is shown below.

Theorem 5. Let M € Sy(R){. Then,
1. There is a matrix L € Mg(R) so that M = LT L.

2. If K € My(R) is any other matrix with M = KT K, then K = UL, where U € O4(R) (that is, L
is unique up to isometries).

To prove this theorem, we will start with a characterization of positive semidefinite matrices by decompo-
sition, which will also allow us to introduce the concept of square root. We will rely on several previous
lemmas.

Lemma 1. Let A, B € M4(R) be two commuting matrices, that is, AB = BA. Then, Ap(B) = p(B)A,
where p denotes any polynomial over matrices (that is, a expression of the form p(C) = apl + a1C +
asC? + -+ a,C™, with ag, . . . ,a, € R).
Proof. Observe that

AB"™ = (AB)B" ! = B(AB)B" %2 =... = B" }Y(AB) = B"A,
and Ap(B) = p(B)A is deduced by linearity. O
Lemma 2. Let D € S’d(R)ar be a diagonal matrix. Then, there is a polynomial over matrices p so that

p(D?) = D.

Proof. Suppose D = diag(A1, ..., Aq), with 0 < Ay < --- < Ag. Then, D? = diag(A}, ..., \2). We take
p as an interpolation polynomial over the points (A?, Ai), fori =1,...,d. If we evaluate it on D? we obtain

p(D?) = p(diag(\i, ..., \2)) = diag(p(A\?),...,p(\3)) = diag(A1,...,\q) = D.

Theorem 6. Let M € M4(R). Then,
1. M € Sq(R){ if, and only if, there is L € M4(R) so that M = LT L.
2. If M € Sq(R)J, there is a single matrix N € Sq(R)§ with N> = M. In addition, M €
Sd(R)+ <~ N ¢ Sd(R)+.
Proof. , First we will see that L L is a positive semidefinite, for any L € Mg4(R). Indeed, given = € R,

e LT Lx = (Lx)" (Lz) = | Lz||3 > 0.

We will prove the second implication of the first statement finding directly the matrix N of the second
statement. Consider the spectral decomposition M = UDU”, with U € O4(R) and D = diag(\q, ..., \g),
with 0 < \; < ...)\q the eigenvalues of M. We define D'/? = diag(v/A1, ..., v/ Ag) and construct the

matrix N = UD'Y2UT. N is positive semidefinite, because its eigenvalues are those of D'/2_ which are all
positive, and besides,

N2 = uyD2uTup'/2yT = up2p2yT — upuT = M.
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Furthermore, the strict positivity of the eigenvalues of M is equivalent to that of the eigenvalues of NV, then
M € My(R)T <= N € My(R)™. Let us finally see that NV is unique.

Suppose that we have N1, Ny € Sy (R)ar with N12 =M = N22. Observe that N7 and Ny must have the same
eigenvalues, since they are necessarily the positive square roots of the eigenvalues of M. Therefore, N; and
N, are similar to a same diagonal matrix, that is, there are matrices U,V € O4(R) with Ny = UDU T and
Ny = VDVT. From N? = N2 we have

vD*vT =vD*vl — vIubp? = D*vTy,

so for W = VITU € O4(R) we obtain that D? and W commute. Combining Lemmas [2|and |1} we obtain
that D and W also commute. Therefore,

WD =DW — V'UD=DV'U — UDUT =VvDVT — N, = N,

obtaining the uniqueness. Ul

As we had anticipated, this theorem motivates the definition of square roots for positive semidefinite matri-
ces.

Definition 6. Let M € Sy(R)J. We define the square root of M as the unique matrix N € Sy(R)J with
N? = M. We denote it as N = M /2,

We can also extend other concepts defined over the non-negative real numbers to the positive semidefinite
matrices. For example, the square root allows us to define the concept of module for any matrix.

Definition 7. Let A € M .4 (R). We define the module of A as
A = (ATA)2 € Sy (R)T.

With the module we can state a polar decomposition theorem, which shows a decomposition that can be
seen as an extension of the polar form for complex numbers.

Theorem 7 (Polar decomposition). Let A € Mgyq(R), with d < d. Then, there is a matrix U €
Maxa (R) with UTU = 1, so that A = U|A|. This decomposition is called the polar decomposition
of A, and it is not necessarily unique, unless A is square and invertible.

Proof. First, observe that, given = € Rd,, we have
[Az[|3 = (Az)"(Az) = 2" AT Az = 2T | APz = 2T |A||Alz = (|Al2)" (|Alx) = ||| Alz]]3-

This means that A and | A| have the same effect on the length of any vector. As an immediate consequence,
we can observe that ker A = ker | A|, since

rekerA < Ax =0 < ||Az||=0=||4|z|] < |A|]z =0 <= =z € ker |A]|.

As d = dimker A+dimim A = dimker |A| 4+ dim im |A|, we also conclude that dim im A = dim im |A],
and then 7(A) = r(|A|). We will denote this rank as r < d.

| A| is positive semidefinite, so there is an orthonormal basis {wy, ..., we} C R? consisting of eigenvectors
of |A|, with corresponding eigenvalues A1, ..., A\g. We can assume that A\1,..., A\, > 0and A\, = -+ =
A¢ = 0, or equivalently, {wy11, ..., wy } is an orthonormal basis of ker | A| = ker A.

We consider the set of vectors { Aw; /A1, ..., Aw, /). }. Note that

1 1 1 1 1 Aj
<)\iAwi, >\jij> = W(Awi,Awﬁ = T)\jwiT|A|2wj = mw?)@wj = )\—Zwlrwj,

which equals 1 if ¢ = j, and O otherwise, so this set is also orthonormal. In fact, this set is an orthonormal
basis of im A.
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B MATHEMATICAL BACKGROUND

We extend the previous set to an orthonormal set of size d’ in R,

1 1
{)\1Aw17 ey ):Awr’ Up41y:--y Ud/} .
Finally, we construct the matrix V' € M4 (R) by adding as columns the vectors in the previous set, and the
matrix W € My (R) by adding as rows the vectors wy, ..., wy. We define U as U = VIV € My (R).
Observe that both V' and W have orthonormal columns, and then VIV = T = WIW, obtaining that

UTU = I as well. We can also observe that Ww; = e;, where {e1,...,eq} is the canonical basis of R? .
Therefore, we obtain
Uw; = )\%wi, 1< <r
V4, r<i<d’
and finally,
AUw;, 1<i<r Aw;, 1<i<r
U A R 7 (2] — — — (2 — — — A .
[Afw; {07 r<i<d {0, r<i<d Wi

where the last equality holds, since {w,41,...,wy} C ker A. So, we have the equality A = U|A| on the
basis {w1, ..., wq }, concluding the proof. The uniqueness of U when A is square and invertible is due to

the fact that | A| is also invertible in that case, and then U = A|A| L.
O

Remark 2. When A € M4(R) is a square matrix, the polar decomposition can be stated as A = U|A|,
where U € O4(R) is an orthogonal matrix.

We are now in a position to prove Theorem [5] We recall its statement below.

Theorem Let M € Sd(R)g. Then,

1. There is a matrix L € My(R) so that M = LT L.

2. If K € My(R) is any other matrix with M = KT K, then K = UL, where U € O4(R) (that is, L
is unique up to isometries).

Proof. The first statement was proved in Theorem @ Suppose then that L, K € M4(R) verify that M =
LTL = KTK. Let L = V|L|, K = W|K]|, with V, W € O4(R), be polar decompositions of L and K.
Then, we have

I'L=K'K — |L"VTV|L| = |[K|"WTW|K]|
= [LI"|L| = |[K["|K| = |L]* = |K[*.

As |L| and | K| are positive semidefinite, they must be the only square root of | L|? = | K|?, thatis, | L| = |K]|.
We call N = |L| = | K|. Returning to the polar decompositions of L and K, it follows that
N=V'L=W'K = K=WVTL.
Therefore, taking U = WV € O4(R), we obtain the desired equality.
0

B.2.3 Matrix Optimization Problems

To conclude the section about matrix analysis, we consider that the analysis of several specific optimization
problems based on eigenvectors is necessary. These problems can be expressed as the maximization of a
trace, and they do not need analytical methods, like gradient methods, to find a solution to them. It can
be solved only via algebraic methods, specifically by calculating the eigenvectors of the matrices involved
in the problem. These problems appear in most of the dimensionality reduction distance metric learning
algorithms. We state these problems, together with their solutions, in the lines below.
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Theorem 8. Ler d',d € N, with d’ < d. Let A € S4(R), and we consider the optimization problem

max tr (LALT)

LEMd/ xXd (R)
st: LLT =1.
The problem attains a maximum if L = , Where vy, ...,vq are orthonormal eigenvectors of
— Vg —

A corresponding to its d' largest eigenvalues. In addition, the maximum value is the sum of the d' largest
eigenvalues of A.

Theorem 9. Let d',d € N, withd' < d. Let A € Sy(R) and B € S4(R)*, and we consider the optimization
problem

tr (LBLTY"Y(LALT
Le X gy W (LBLD)THLALY))

The problem attains a maximum if L = , where v1, . .., vg are eigenvectors of B™1 A corre-
— Vg —
sponding to its d’ largest eigenvalues.

Theorem 10. Let d',d € N, with d’ < d. Let A, B € Sq(R)™, and we consider the optimization problem

tr (LBLTY"Y(LALT LALTY Y (LBLY
Leﬂgz?fd(m r (( ) ( )+ ( ) ( )

The problem attains a maximum if L = < ) where v1, . .., vy are the d' eigenvectors of B~1 A
— Vg —

with the highest values for the expression \; + 1/\;, where \; is the eigenvalue associated with v;.

These theorems can be proven using tools such as the Rayleigh quotient and the Courant-Fischer theorem
and its consequences. First, we will introduce the Rayleigh quotient, and we will see its relationship with
the eigenvalues and eigenvectors.

Definition 8. Let A € Sy(R). We define the Rayleigh quotient associated with A as the mapping p4: R?\
{0} — R given by
2TAr  (Az, )

= - vz € R?\ {0}.

If B € S3(R)", we define the generalized Rayleigh quotient associated with A and B as the mapping
Rap: RT\ {0} — R given by
eT Az (Azx, )

Rap(x) = = vz e R%\ {0}.
T Bx HxHQB

Throughout this section we will assume that A € S;(R) and B € Sy(R)™ are fixed, and we will refer to
Rayleigh quotients as p = ps and R = R4 p. A first observation about p and R is that, for x € R%\ {0}
and A € R*, it is verified that

Ax)TAAz) N2 (2T Ax)

RO®) = NTBOw) ~ 2@ B~ F@)
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B MATHEMATICAL BACKGROUND

Therefore, R takes all its values over the (d — 1)-dimensional unit sphere, that is, R(R\ {0}) = R(S? 1) C
R. Since R is continuous and the sphere is compact, it follows that R achieves a maximum and a minimum
in R?\ {0}. The same follows with p. These maxima and minima are closely related with the problems we
want to analyze. We start studying the extremes of p.

Theorem 11 (Rayleigh-Ritz). Let A\pin and A\pax be the minimum and maximum eigenvalues of A, respec-
tively. Then,

1. Forevery x € RY, Apinlz]|? < 27 Az < Apax|j2||%

— zTAx _ T

2. Amax = MAXyepd\(0} 7Ty = MAX|gp=1 7 AT,
_ : 2T Ax - T

3. Amin = Milgerd\{0} 5T, — M|z|=1% Az.

Therefore, the maximum and minimum values of p are \pin and Anax, respectively. These values are attained
in the corresponding eigenvectors.

Proof. Let A = UDU”, with U € O4(R) and D = diag(\y,. .., \q), where A\; < --- < \g, be a spectral
decomposition of A. Let z € R?\ {0} and we take y = U” x. Then,

d
TAr UDUTe  JTUTUDUTUy Dy = Ay
A= e = e T U0y B VB ©
In addition, it is clear that
d d d
Myl =M ) Juf <D A < XAa Yl = Aallyl3e
i=1 i=1 i=1
Applying this inequality over Eq. [3] it follows that
A < p(z) < Ag.
Furthermore, if u; and uy are the corresponding eigenvectors of A\; and A4, we get
T T T T
p(ur) = u;ﬁﬁl = A;?TLT =X, plug) = ugﬁ::ld = )\Z%izd = A4
Therefore, the equality is attained, and the three statements of the theorem follow from this equality. O

Rayleigh-Ritz theorem shows us that p(R? \ {0}) = [Amin, Amax], oObtaining the extreme values in the
corresponding eigenvectors. However, these are not the only eigenvalues that can act as an optimal for a
Rayleigh quotient. If we restrict ourselves to lower dimensional spaces, we can obtain any eigenvalue of A
as an optimal for the Rayleigh quotient, as we will see below.

Theorem 12 (Courant-Fischer). Let A1 < --- < Ag the eigenvectors of A, and we denote by Sy, a vector
subspace of R% of dimension k. Then, for each k € {1,...,d}, we get

\s = min max z! Az, )
SpCRd xSk
llzllz=1
A = max min  z! Azx. 5
Sd—k+1CRITESg— k41
[|lzll2=1

This result extends the Rayleigh-Ritz statement, and this theorem is proven by Horn and Johnson [33]] (chap.
4). There we can also find the proof of an important consequence of Courant-Fischer theorem, usually known
as the Cauchy’s interlace theorem.
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B.2  Matrix Analysis

Theorem 13 (Cauchy’s interlace). Suppose that Ay < --- < )y are the eigenvalues of A. Let J C
{1,...,d} be a set of cardinal |J| = d’, and let A; € Sy (R) be the matrix given by Ay = (Aij)i e,
that is, the submatrix of A with the entries of A whose indices are in J X J. Then, if 1| < --- < T4 are the
eigenvalues of Ay, for each k € {1,...,d'},

)\k S Tk S )‘k+d7d’-

The next result follows from Cauchy’s interlace theorem, and the inequality it states will help us to solve
our optimization problems.

Corollary 2. Let L € Mgyg(R) with LLT = I. If py > --- > pg are the eigenvalues of A and
o1 > -+ > og are the eigenvalues of LALT (now we are considering eigenvalues in decreasing order),
then oy, < py, fork=1,....d.

Proof. Since LLT = I, the rows of L are orthonormal eigenvectors. We can extend L to an orthogonal
matrix L € O4(R) by adding d — d’' orthonormal eigenvectors, and orthonormal to the rows of L, in its

rows. We have then that LAL” and A have the same eigenvalues, and LAL” is a submatrix of LALT
obtained by deleting the last d — d’ rows and columns. The assertion now follows from Cauchy’s interlace
Theorem [13] considering eigenvalues in the opposite order. OJ

We are now in a position to prove the theorems [8] [9] and [I0] proposed at the beginning of this section.

Theorem Let d',d € N, with d' < d. Let A € S;(R), and we consider the optimization problem

max tr (LALT)

LeMyy 4(R) ©6)
st LLT =1
The problem attains a maximum if L = , Where vy, ...,vq are orthonormal eigenvectors of
— Vg —

A corresponding to its d' largest eigenvalues. In addition, the maximum value is the sum of the d' largest
eigenvalues of A.

Proof. Let pu; > --- > uq the eigenvalues of A in decreasing order, and o1 > --- > o4 the eigenvalues of
LAL". By Corollary for any L € Mgy q(R) with LLT =1,

d d’
tI‘(LALT) = ZUZ‘ S ZMZ
i=1 i=1
In addition, when the rows of L are orthonormal eigenvectors vy, . . ., vy of A corresponding to p1, ..., tgr,
we get LLT = I and tr(LAL") = Zle 14i, thus equality holds for these vectors. O
Lemma 3 (Simultaneous diagonalization). Let A € Sy(R) and B € Sy(R)*. Then, there is an invertible

matrix P € GL4(R) and a diagonal matrix D € My(R) with P'AP = D and PTBP = I.

Proof. We consider the matrix C = B~/2AB~1/2. C is symmetric, since A and B are symmetric, thus
there is a matrix U € Oy4(R) so that UTCU is diagonal. We call D = UTCU and we consider P =

B~12U € GLg(R). We get
PTAP = PTB\2¢cB'?p = (B~Y20)TB\2CcB*(B~'/?U) = UTCU = D,
PTBP = (B Y2\ B(B~V?U) =UuTB?BB~?U =UTU = 1.
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Theorem Let d',d € N, withd' < d. Let A € Sq(R) and B € S;(R)™, and we consider the optimization
problem

max tr (LBLY) Y (LALT 7

peax ot ((EBLT)THLALT)) ™

The problem attains a maximum if L = , where vy, . .., vy are eigenvectors of B~1 A corre-
— Vg —

sponding to its d' largest eigenvalues.

Proof. We denote U = LT € Mysa (R). If we take the matrix P from Lemma [3| and the matrix V' €
M xa(R) with U = PV (it exists and it is unique, since P is regular), we have

tr (LBLT)"Y(LAL")) = tr (UTBU) 1 (UTAU)) = tr (V' PTBPV) Y (VT PTAPY))
=tr(VTV)"'(vTDV)).
Therefore, maximizing Eq. is equivalent to maximize with respect to V the expression
tr((VTV)~L(VT DV)), because the parameter change is bijective. Now we consider a polar decomposition
V = Q|V|, with Q € Myxq (R) verifying QT Q = I. Tt follows that
te(VIV)THVEDV) = tr((VITQTQIVD T (IVITQT DQIVIT))
= (VI (VITQTDQIVI)
= tr(|V['QTDQIV]) = t2(QTDQIV||V[™) = tr(QT DQ).

If we call W = Q7, what we have obtained is that the maximization of Eq. [7|is equivalent to maxi-
mizing in W tr(WDWT), subject to WW7T = I, thus obtaining the optimization problem given in Eq.
[l We can suppose the diagonal of D ordered in descending order, and then a matrix W that solves
the optimization problem can be obtained adding as rows the vectors ey, ..., ey of the canonical basis
of R®. Then, ) has contains the same vectors, but added by columns. Observe that the quotient trace
T(X) =tr (XTBX) "1 (XTAX)), with X € M« (R), is invariant with respect to right multiplications
by invertible matrices. Indeed, if R € GLy(R),

T(XR) =tr (RTX"BXR) " (R"XTAXR)) = tr(R"'(X"BX) 'R"TRT(XTAX)R)
=tr(XTBX) " Y XTAX)RR™) = T(X).
Since U maximizes 7' and U = PQ|V|, then PQ also maximizes 7. In addition, as from PT AP = D and
PTBP = I we obtain that
D =PTAP = (PTBP) Y (PTAP)= P 'B P TPTAP = P7'B AP,

we conclude that P diagonalizes B~! A, and then, it contains as columns the eigenvectors of this matrix.
Since @ contains the d’ first eigenvectors of the canonical basis by columns, P(Q contains as columns the
d’ first eigenvectors of B! A, corresponding to its d’ largest eigenvalues. This ends the proof, because a
solution for the problem given by Eq. [/| which is equal to maximizing 7" except for a transposition, consists
in adding those vectors as rows. O

Theorem Let d',d € N, withd' < d. Let A, B € S4(R)™, and we consider the optimization problem

T\—1 T T\—1 T
L@Iﬁfd(m tr (LBL")""(LAL") + (LAL") " (LBL")) ®)
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The problem attains a maximum if L = < ) where v1, ..., vy are the d’ eigenvectors of B~ A
— Vg —

with the highest values for the expression \; + 1/\;, where \; is the eigenvalue associated with v;.

Proof. First of all, given C' € S4(R)™ we consider the optimization problem

max tr ((LC’LT + LC_ILT)) =  max tr (L(C + C’_I)LT) 9)
LeMyyqa(R) LeMy . qa(R)
Using Theorem@ a solution to this problem can be found by taking as rows of L the eigenvectors of C+C~*
corresponding to its d’ largest eigenvalues. Observe that the eigenvectors of C' and C ! are the same, and
each one’s eigenvalues are the inverse of the other. Therefore, C' + C~! also has the same eigenvectors, and
its eigenvalues have the form A + 1/, for each A eigenvalue of C'. Then, the previous solution for Eq. E]is
equivalent to taking the eigenvectors of C' for which A + 1/ is maximized.

Finally, we only have to realize that we can follow the same proof as in Theorem [9] considering Eqgs. [9]and
[ instead of Eqs. [|and

B.3 Information Theory

Information theory is a branch of mathematics and computer theory, with the purpose of establishing a
rigurous measure to quantify the information and disorder contained in a communication message. It was
developed with the aim of finding limits in signal processing operations such as compression, storage and
communication. Today, its applications extend to most fields of science and engineering.

Many concepts associated with information theory have been defined, such as entropy, which measures the
amount of uncertainty or information expected in an event, mutual information, which measures the amount
of information that one random variable contains about another random variable, or relative entropy, which is
a way of measuring the closeness between different random variables. We will focus on the relative entropy,
and the concepts derived from it. To do this, we will first define the concept of divergence. Divergence is
a magnitude to measure the closeness between certain objects in a set. We should not confuse divergences
with distances (as described in Section [2.2), because the magnitudes we will consider may not verify some
of the properties required for distances, such as symmetry or triangle inequality.

Definition 9. Let X be a set. A map D(-||-): X x X — R is said to be a divergence if it verifies the
following properties:

1. Non negativity: D(z|y) > 0, for every z,y € X.
2. Coincidence: D(z||y) = 0if, and only if, z = y.

We will use divergences to measure the closeness between probability distributions. The divergences we
will use will be presented in the following paragraphs.
Definition 10. Let (€2, .4, P) be a probability space and X : Q — R be a random variable, discrete or
continuous, in that space. Suppose that p is the corresponding probability mass function or density function.
Suppose that ¢ is another probability mass function or density function. Then, we define the relative entropy
or the Kullback-Leibler divergence between p and g, as

p(X )]

KL(pllq) = E, [log o(X)

as long as such expectation exists. For the discrete case, if p and g are valued over the same points, we have

p(x
KLGlo) = Y p()lox 22,
q(x)
zeX(Q)
and for the continuous case, as long as the absolute integral is finite, we have
KLl = [ pla)ios 2 a
pllg) = p(z)log —= dz.
—o q(x)
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For continuity reasons, we assume that 01log(0/0) = 0.

The first step is to check that, indeed, Kullback-Leibler divergence is a divergence. This result is known as
the information inequality.

Theorem 14 (Information inequality). Kullback-Leibler divergence is a divergence, that is, KL(p||q) > 0
and the equality holds if, and only if, p(x) = q(z) a.e. in X (Q) (the equality is at every point in the discrete
case).

Proof. This result is an immediate consequence of Jensen’s inequality [[116] applied to the — log function,
which is strictly convex. We have
X X
ol >] . {1 o q

KL(p[lq) = E, {log 2X) 8 %)

> —logE, {Zéiﬂ = —log/p(:c)(](x) dx

:—log/q(x) dx = —log1l=0.

The proof for the discrete case is similar. In addition, the strict convexity implies that equality holds iff p/g
is constant a.e., iff p = g a.e., since they are probability density functions or mass functions. And, as in the
discrete case p and ¢ are valued over sets with no null probabilities, we have equality at every point. 0

As we have already mentioned, Kullback-Leibler divergence is useful to measure closeness between proba-
bility distributions and can be used to bring the distributions closer. However, it is not all that useful to put
the distributions away, since, as Kullback-Leibler divergence is not symmetric, the values of KL(p||¢) and
KL(q||p) may differ significantly when p and ¢ are not near. That is why it is sometimes helpful to work
with a symmetrization of the Kullback-Leibler divergence known as the Jeffrey divergence.

Definition 11. The Jeffrey divergence between two probability distributions p and ¢ for which KL(p||q) and

KL(q||p) exist is defined by
JF(pllq) = KL(pllq) + KL(qlp)-
In the discrete case we have

JF(pllg) = D (p(x) — q(@))(logp(x) — log g(x)).
z€X(Q)
And, for the continuous case,

JE(pllg) = /Oo (p(z) — q(x))(log p(x) — log q(x)) da.

—00

It is clear that Jeffrey divergence is a divergence, as a consequence of the information inequality, and it is
also symmetric. Observe that both divergences are functions only of the probability distributions, that is,
they only depend on the values set on the distributions. This fact allows divergence to be extended to random
vectors, as long as we know its probability density functions or mass functions.

A case of special interest in the algorithms we will discuss in subsequent sections is the calculation of
divergences between multivariate gaussian distributions. Recall that, if ;1 € R% and ¥ € Sy(R)™, a random
vector X = (X1,...,Xy) follows a multivariate gaussian distribution with mean p and covariance ¥, if it
has the following probability density function:

1 1 _
Peli D) = g o (e - W ).

It is well-known that E[X] = ;1 and Cov(X) = E[(X — E[X])(X — E[X])T] = %, thus gaussian distribu-
tions are completely defined by its mean and covariance. We want to establish an easy way to compute the
calculation of divergences between gaussian distributions. To do this, we will find relationships between the
studied divergences and matrix divergences. Matrix divergences are an alternative to the Frobenius norm for
measuring the closeness between matrices. We are interested in the ones known as Bregman divergences.
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Definition 12. Let X' C M (R) be an open convex set, and ¢: K — R a strictly convex and differentiable
function. The Bregman divergence corresponding to ¢ is the map Dy (-||-): K x K — R given by

Dy(A||B) = ¢(A) = ¢(B) — t2(Vé(B)" (A - B)).

Effectively, Bregman divergences are also divergences, as we can write the expression above as Dy (A||B) =
¢(A) — ¢(B) — (Vop(B), A — B) r, which is known to be non negative when ¢ is strictly convex, and to
take the zero value if and only if A = B. In our situation, we are interested in choosing the log-det function
to construct a Bregman divergence, that is, the function ¢;q: Sg(R)™ — R given by

$1a(M) = —logdet(M).
This function is known to be strictly convex and its gradient is V f(M) = M1, for each M in Sg(R)*

[32]], hence we can construct the known as log-det divergence through the expression

Dyy(A||B) = log det(B) —logdet(A) — tr(B~1(A — B)) = tr(AB~!) — logdet(AB™!) — d.

Once defined the log-det divergence, we are able to express the Kullback-Leibler and Jeffrey divergences
between gaussian distributions in terms of this new matrix divergence.

Theorem 15. Kullback-Leibler divergence between two multivariate gaussian distributions defined by the
probability density functions py(x|py, $1) and pa(x|pa, X2), with py, po € RY and 1,59 € Sg(R)T,
verifies that

1 1
KL(p1llp2) = 5 Dia(Z1]Z2) + 5l — uz\@;l,

where || - ||s; denotes the norm defined by the positive definite matrix 3, that is,
d
v € R%

v|ls = VuTXo, for every

Proof of this result can be found in Davis and Dhillon [[117] (Section 3.1). A simpler version of this theorem
can be stated immediately, when we consider equal-mean gaussian distributions.

Corollary 3. Kullback-Leibler divergence between two multivariate gaussian distributions defined by the
probability density functions p1 and ps with equal means and covariances Y1 and Yo, verifies that

1
KL(p1|lp2) = ngd(Elnzﬂ'

Using these results, we can also express the Jeffrey divergence between gaussian distributions in terms of its
mean vectors and covariance matrices. The following expressions can be easily deduced from the theorems
above. For more details, see also [42, App. B].

Corollary 4. Jeffrey divergence between two multivariate gaussian distributions defined by the probability
density functions py (x|p1, X1) and ps (x| e, To) with py, o € R% and $1, %5 € Sq(R)™, verifies that

1 _ _ 1
JE(lp2) = 5 tr(S15" + 57'5) — d 5l — palEoa g

Corollary 5. Jeffrey divergence between two multivariate gaussian distributions defined by the probability
density functions p1 and ps with equal means and covariances 31 and X9, verifies that

1 _ _
JFE (p1||p2) = 3 tr(X1 25t + 271 8)) — d.

C Algorithms for Distance Metric Learning: Detailed Explanation

This appendix describes some of the most popular techniques currently being used in supervised distance
metric learning. We also add a review of the principal component analysis, although not supervised, because
of its importance for other distance metric learning algorithms. Some of these techniques, such as PCA or
LDA [37]], are statistical procedures developed over the last century, which are still of great relevance in
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many problems nowadays. Other more recent proposals are in the state of the art, as is the case of NCMML
[40] or DMLMJ [42], among others. Several of the most popular classic distance metric learning algorithms,
such as LMNN [38] or NCA [39]], have also been included.

The analyzed techniques are grouped into six subsections. Each of these subsections describes algorithms
that share the main purpose, although the purposes described in each section are not exclusive. In the first
section (Appendix [C.1)) we will study the techniques oriented specifically to dimensionality reduction. Next,
the techniques with the purpose of learning distances that improve the nearest neighbors classifiers will be
developed (Appendix [C.2), followed by those techniques that aim to improve classifiers based on centroids
(Appendix [C.3)). The fourth subsection includes methods based on the information theory concepts studied
in Appendix Subsequently, several distance metric learning mechanisms with less specific goals are
described (Appendix [C.3). Finally, kernel-based versions of some of the above algorithms are analyzed, to
be able to work in high-dimensionality spaces (Appendix [C.6).

For each of the techniques we will analyze the problem they try to solve or optimize, the mathematical
formulations of those problems and the algorithms proposed to solve them.

C.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques try to learn a distance by searching for a linear transformation from
the dataset space to a lower dimensional euclidean space. These kinds of algorithms share many features.
For instance, they are usually efficient and their execution involves the calculation of eigenvectors. It is
important to point out that there are other non-linear or unsupervised dimensionality reduction techniques
[118]], but they are beyond the scope of this paper (with the exception of kernel versions in Appendix [C.6).
The algorithms we will describe are PCA [65]], LDA [35] and ANMM [36].

C.1.1 Principal Component Analysis (PCA)

PCA [65] is one of the most popular dimensionality reduction techniques in unsupervised distance metric
learning. Although PCA is an unsupervised learning algorithm, it is necessary to talk about it in our work,
firstly because of its great relevance, and more particularly, because when a supervised distance metric
learning algorithm does not allow a dimensionality reduction, PCA can be first applied to the data in order
to be able to use the algorithm later in the lower dimensional space.

Principal component analysis can be understood from two different points of view, which end up leading to
the same optimization problem. The first of these approaches consists of finding two linear transformations,
one that compresses the data to a smaller space, and another that decompresses them in the original space,
so that in the process of compression and decompression the minimum information is lost.

Let us focus on this first approach. Suppose we have the dataset X = {z,...,2x} C R and fix 0 <
d’" < d. Let us also assume that data are centered, that is, that the mean of the dataset is zero. If it is not
the case, it is enough to apply previously to the data the transformation = — = — p, where u = > x;/N
is the dataset mean. We are looking for a compression matrix L € M, 4(R), and a decompression matrix
U € Mgxa(R), so that, after compressing and decompressing each data the squares of the euclidean
distances to the original data are minimal. In other words, the problem we are trying to solve is

N
min x; — ULz; 3. 10
LGM;Xd(]R) ;H ! ill2 (10)
UeMgy, g (R)

To find a solution to this problem, first of all we will see that U and L matrices have to be related in a very
particular way.

Lemma 4. If (U, L) is a solution of the problem given in Eq. then LLT = I (inR% ) and U = L.

Proof. We fix U € Mgxg(R) and L € Mgy4(R). We can assume that both U and L are full-rank,
otherwise the rank of UL is lower than d’. Note that in that case, it is always possible to extend U and
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L matrices to full-rank matrices (by replacing linear combinations in the columns by linear independent
vectors as long as the dimension allows it) so that the subspace generated extends the one generated by U L,
and in such a case, the error obtained in Eq. [I0]for the extension will be, at most, the error obtained for U
and L.

We consider the linear map = + ULxz. The image of this map, R = {ULxz: z € R?}, is a vector
subspace of R? of dimension d’. Let {u1, ..., us} be an orthonormal basis of R, and let V€ Mg, 4(R)
the matrix that has, by rows, the vectors uy, ..., uy. It is verified then that the image of V' has dimension
d' and that VVT = J. In addition, if we consider V7 as a linear map, we see that its image is R (since

VTe; =wii=1,...,d, where {e1,...,eq} is the canonical basis of RY).
Therefore, every vector of R can be written as V''y, with y € RY. Given z € R, Yy e RY, we have
lz = VTyl3 = (& = VTy,2 = VTy)

= [l = 2{z, VTy) + [VTyl

= || = 2(y,Vz) + y"VV Ty

= [lz]* = 2(y, V) + 5"y

= [l2l” + [yl - 2{y, V).
If we calculate the gradient with respect to y from the last previous expression, we obtain V, ||z — VTy||3 =
2y — 2V z, which, by equating to zero, allows us to obtain a single critical point, y = V. The convexity
of this function (it is the composition of the euclidean norm with an affine map) assures us that this critical

point is a global minimum. Therefore, this tells us that, for each x € RY, the distance to z in the set R
achieves its minimum at the point V7'V . In particular, for the dataset X we conclude that

N N
D llwi = ULailly 2 3l = VI Vail3.
i=1 i=1

Since U and L were fixed, we can find a matrix V' with these properties for any U and L in the conditions
of the problem, which concludes the proof. OJ

The above lemma allows us to reformulate our problem in terms of only the matrix L,

N
min x; — LT La;||2. 11

LeMy 4 (R) ;” ’ ill (D
LLT=1

Let us note now that, for z € R% and L € Mg 4(R), it is verified that
|z — LTLx|3 = (x — LT La,x — LT Lx)
= ||z||? = 2(z, LT Lz) + (LT L, LT Lx)
= ||z|? = 22T LT La 4+ 2T LY LLT L
= ||z||? = 2T LT La
= ||z||? — tr(2T LT Lx)
= ||z||? = tr(LazT LT).
Thus, if we remove terms that do not depend on L, we can transform the problem in Eq. [TT]into the following

equivalent problem:

max tr (LXLT), (12)
LeM gy 4(R)
LLT=1
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where > = Zf\il xleT is, except for a constant, the covariance matrix corresponding to the data in X. This
matrix is symmetric, and Theorem [§] guarantees that we can find a maximum of the problem if we build
L adding the d’ orthonormal eigenvectors corresponding to the d’ largest eigenvalues of X. The directions
that determine these vectors are the principal directions, and the components of the data transformed in the
orthonormal system determined by the principal directions are the so-called principal components.

To conclude, the second approach from which the principal components problem can be dealt with consists
of selecting the orthogonal directions for which the variance is maximized. We know that if ¥ is the co-
variance matrix of X', when applying a linear transformation L to the data, the new covariance matrix is
given by LY LT If we want a transformation that reduces the dimensionality and for which the variance is
maximized in each variable, what we are looking for is to take the trace of the previous matrix, which leads
us back again to Eq. The symmetry of > ensures that we can take the main orthonormal directions that
maximize the variance for each possible value of d’.

Finally, it is important to note that the matrix L € M4(R) (taking all dimensions) that is constructed by
adding ¥ eigenvectors row by row is the orthogonal matrix that diagonalizes X, and therefore, when L
is applied to the data, the transformed data have as the covariance matrix the diagonal matrix LY LT =
diag(A1,...,Ag), where A\ > --- > )4 are the eigenvalues of . This tells us that the eigenvalues of
the covariance matrix represent the amount of variance explained by each of the principal directions. This
provides an additional advantage to PCA, since it allows the percentage of variance that explains each
principal component to be analyzed, in order to be able to later choose a dimension that adjusts to the
amount of variance that we want to keep in the transformed data.

Figure [10] graphically exemplifies how principal component analysis works.

C.1.2 Linear Discriminant Analysis (LDA)

LDA [335] is a classical distance metric learning technique with the purpose of learning a projection matrix
that maximizes the separation between classes in the projected space, that is, it tries to find the directions
that best distinguish the different classes, as shown in Figure[I1]

Figure [11] also allows us to compare the results of the projections obtained by PCA and LDA, showing
the most remarkable difference between the two techniques: PCA does not take into account the labels
information, while LDA does use it. We can observe that the directions obtained by PCA and LDA do not
present any type of relationship, the latter being the only one of them that provides a data projection oriented
to supervised learning.

It is also possible to observe in Figure (11| that it makes no sense to look for a second independent direction
that continues to maximize class separation, while in PCA it always makes sense to look inductively for
orthogonal directions that maximize variance. If the dataset shown in the figure had a third class, we could
find a second direction that maximizes the separation between classes, thus offering the possibility of pro-
jecting onto a plane. In general, we will see that if we have r classes we will be able to find at most (and
as long as the dimension of the original space allows it) » — 1 directions that maximize the separation. This
indicates that the projections that LDA is going to learn will be, in general, towards a quite low dimension,
and always limited by the number of classes in the dataset.

Suppose we have the labeled dataset X = {z1,...,zn} C R4, where C is the set of all the classes in
the problem and y,...,yn € C are the corresponding labels. Suppose that the number of classes in the
problem is [C| = r. For each ¢ € C we define the set C. = {i € {1,...,N}: y; = ¢}, and N, = |C.|. We
consider the mean vector of each class,
1
He = ﬁc Z Xi,

ZGCC

and the mean vector for the whole dataset,

1 1 &
D) IERS 8
=1

ceC ieCe
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Figure 10: A graphical example of PCA. The first image shows a dataset, along with the principal directions (proportional according
to the explained variance) learned by PCA. To the right, the data is projected at maximum dimension. We observe that this projection
consists of rotating the data making the axes coincide with the principal directions. At the bottom left, data is projected onto the
first principal component. Finally, to the right, the data recovered through the decompression matrix, along with the original
data. We can see that the PCA projection is the one that minimizes the quadratic decompression error. In this particular case the
decompressed data is on the regression line of the original data, due to the dimensions of the problem.

We will define two scatter matrices, one between-class, denoted as Sp, and the other within-class, denoted
as S,,. The between-class scatter matrix is defined as

Sy = Ne(pte = p)(pe — )"

ceC

And the within-class scatter matrix is defined as

Sw = Z Z(xz - ﬂc)(xz - NC)T-

ceC 1eCe

Note that these matrices represent, except multiplicative constants, the covariances between the data of
different classes, taking the class means as representatives for each class in the first case, and the sum,
for each class, of the covariances of that class data, in the second case. Since we want to maximize the
separation between classes we will formulate the problem of optimization as the search for a projection
L € My«q(R) that maximizes the quotient of the between-class variances and within-class variances
determined by the previous matrices. The problem is established as

tr (LS, LT Y(LS,LT)) . 13
el (ESHTESD) .
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Figure 11: Graphical example of LDA and comparison with PCA. The first image shows a dataset, with the first principal direction
determined by PCA, in orange, and the direction determined by LDA, in green. We observe that if we project the data on the
direction obtained by LDA they separate, as it is shown in the right image. In contrast, the direction obtained by PCA only allows
us to maximize the variance of the whole dataset, since it does not consider the information of the labels.

Theorem [9] assures us that, in order to maximize the problem given in Eq. [I3] L has to be composed by
the eigenvectors corresponding to the largest eigenvalues of S, 1Sy, as long as S, is invertible. In practice,
this happens in most problems where N > d, because S, is the sum of IV outer products, each of which
may add a new dimension to the matrix rank. If N > d it is likely that S, is full-rank. This, together with
the fact that .S, is positive semidefinite, would guarantee S5, to be positive definite, thus entering into the
theorem hypothesis.

It is interesting to remark the similarity between the optimization problem in Eq. [13]and the expression of
the Calinski-Harabasz index [119], an index used in clustering to measure the separation of the established
clusters, and that uses the same scatter matrices, and a similar quotient formulation.

Furthermore, let us note, as it was already mentioned at the beginning of this section, that at most we can
get r — 1 eigenvectors with a non zero corresponding eigenvalue. This is because the maximum rank of .Sy
is 7 — 1, because its rank coincides with the rank of the matrix A that has as columns the vectors . — i (we
get Sy = Adiag(Ne,, ..., N, )AT), which can have as maximum rank r, and this matrix also includes the
linear combination ) | N¢(u.—p) = 0, so at least one column is linearly dependent of the others. Therefore,
S, 1S, also has a maximum rank of 7 — 1. Consequently, the projection matrix that maximizes Eq. is
also going to have, at most, this rank, thus the projection will be contained in a space of this dimension.
Therefore, the choice of a dimension d’ > r — 1 will not provide any additional information to that provided
by the projection onto dimension r — 1.

To conclude, although we have seen that LDA allows us to reduce dimensionality by adding supervised
information as opposed to the non supervised PCA, it can also present some limitations:

o If the size of the dataset is too small, the within-class scatter matrix may be singular, preventing
the calculation of S;;*S. In this situation, several mechanisms are proposed to keep this technique
going. One of the most used consists of regularizing the problem, considering, instead of .S,,, the
matrix Sy, +&I, where € > 0, making .S,, + ¢/ be positive definite. The problem of the singularity of
Sw also arises if there are correlated attributes. This case can be avoided by eliminating redundant
attributes in a preprocessing prior to learning.

e The definition of the scatter matrices assumes, to some extent, that the data in each class are dis-
tributed according to a multivariate gaussian distribution. Therefore, if the data presented other
distributions, the projection learned might not be of enough quality.

e As already mentioned, LDA only allows the extraction of » — 1 attributes, which may be suboptimal
in some cases, as a lot of information could be lost.
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C.1.3 Average Neighborhood Margin Maximization (ANMM)

ANMM [36] is a distance metric learning technique specifically oriented to dimensionality reduction. It
therefore follows the same path as the aforementioned PCA and LDA, trying to solve some of their limita-
tions.

The objective of ANMM is to learn a linear transformation L € M g, 4(R), with d’ < d, that projects the
data onto a lower dimensional space, so that the similarity between the elements of the same class and the
separation between classes is maximized, following the criterion of maximization of margins that we will
show next.

We consider the training dataset X = {x1,...,xn} C R?, with corresponding labels 41, . .., yn, and we
fix &, ¢ € N, and euclidean distance as the initial distance. From these variables we will create two types of
neighborhoods.

Definition 13. Let z; € X.

We define the £-nearest homogeneous neighborhood of x; as the set of the £ samples in X'\ {z;} nearest to
x; that belong to its same class. We will denote it by N7?.

We define the (-nearest heterogeneous neighborhood of x; as the set of the ( samples in X nearest to x; that
belong to a different class. We will denote it by NF.

ANMM is intended to maximize the concept of average neighborhood margin, which we define below.
Definition 14. Given x; € X, its average neighborhood margin -y; is defined as

_ i — x| i — 2]
i = Z |N6| Z ’j\/'lo| :

k:xpeNE J:x;eN?

The (global) average neighborhood margin « is defined as
N
Y=
i=1

Note that, for each z; € X, its average neighborhood margin represents the difference between the aver-
age distance from x; to its heterogeneus neighbors, and the average distance from x; to its homogeneous
neighbors. Therefore, maximizing this margin allows, locally, to move data from different classes away,
and pulling those of the same class. Figure [T2] graphically describes the concept of average neighborhood
margin.

We are now looking for a linear transformation L that maximizes the margin associated with the projected
data, {Lx;: i = 1,..., N'}. For such data, we have the average neighborhood margin corresponding to that
transformation,

|| La; — Lay | | La; — Laj|?
Z% Z Z ] - Z NP
i=1 \k:zpeN? ¢ J:xjeN? L

Observe that, thanks to the linearity of the trace operator, we can express

N
I ' [Ng]
i=1 k: x,eNF i=1 k: x,eNF g
[ N
(zi — @) (@i — )" |
=tr|L Z Z IN¢] L
| \i=1 ks zpene ¢
= tr(LSLT),
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Figure 12: Graphical description of the average neighborhood margin, for the sample z;, for ¢ = ¢ = 3. The blue and red
circumferences determine the average distance from x; to data of the same and different classes, respectively.

Y ()T . i .
where S = 37,37, e % is called the scatter matrix. In a similar way, if we define

o V(a—a)T
c=>, Zj: 2, ENO %, which we will call the compactness matrix, we get

> o eIl wenn,

i=1j: x;€EN?

And therefore, combining both expressions,

~E =tr(L(S — C)LT). (14)

The maximization of v as presented in Eq H is not restrictive enough, because it is enough to multiply L
by positive constants to get a value of v as large as we want. That is why the constraint LL” = I is added,
so we end up with the next optimization problem:

tr (L(S — LT
L 2X o (LSO

st: LL' =1.
Observe that S — C' is symmetric, as it is the difference between two positive semidefinite matrices (each of

them is the sum of outer products). Theorem [§]tells us that the matrix L we are looking for can be built by
adding, by rows, the d’ eigenvectors of S — C' corresponding to its d’ largest eigenvalues.

To conclude, note that ANMM solves some of the issues of the previously mentioned PCA and LDA. On the
one hand, it is a supervised learning algorithm, hence it uses the class information that is ignored by PCA.
On the other hand, faced with the shortcomings of LDA, we can see that:
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e [t does not have computational problems with small samples, for which scatter or compactness
matrices may be singular, because it does not have to calculate their inverse matrices.

e [t does not make any assumption about the class distributions. The formulation of the problem is
purely geometric.

e [t admits any size for dimensionality reduction. It does not impose that this size must be lower than
the number of classes.

Finally, we can also observe that, if we keep the maximum dimension d, the condition LIt =71 implies that
L is orthogonal and LT L = I, thus we are just learning an isometry, as already happened with PCA. There-
fore, distance-based classifiers will only be able to experience improvements when the chosen dimension is
strictly smaller than the original one.

C.2 Algorithms to Improve Nearest Neighbors Classifiers

In the following paragraphs we will analyze algorithms specifically designed to work with nearest neighbors
classifiers. The algorithms we will study are known as LMNN [38]] and NCA [39]].

C.2.1 Large Margin Nearest Neighbors (LMNN)

LMNN [38] is a distance metric learning algorithm aimed specifically at improving the accuracy of the k-
nearest neighbors classifier. It is based on the premise that this classifier will label a sample more reliably if
its k neighbors share the same label, and to do so it tries to learn a distance that maximizes the number of
samples that share its label with as many neighbors as possible.

In this way, the LMNN algorithm tries to minimize an error function that penalizes, on the one hand, the
large distance between each sample and those considered its ideal neighbors, and on the other hand, the
small distances between examples of different classes.

Suppose we have a dataset X = {z1,...,any} C R? with corresponding labels 1, ..., yn. To work, the
algorithm makes use of the concept of rarget neighbors. Given a sample z; € X, its k target neighbors are
those examples of the same class as x; and different from this, for which it is desired to be considered as
neighbors in the nearest neighbors classification. If z; is a target neighbor of x;, then we will write it as
J ~ 1. Observe that the relationship given by ~~ may not be symmetric. Target neighbors are fixed during
the learning process. If we have some prior information about our dataset we can use it to determine the
target neighbors. Otherwise, a good option is to use the nearest neighbors for the euclidean distance as target
neighbors.

Once the target neighbors have been established, for each distance and for each sample in X we can create
a perimeter determined by the the furthest target neighbor. We are looking for distances for which there are
no samples of other classes in this perimeter. It is necessary to emphasize that with this perimeter there are
not enough separation guarantees, because a feasible distance could have collapsed all the target neighbors
in a point, and then the perimeter would have radius zero. For this reason, a margin determined by the radius
of the perimeter is considered, to which a positive constant is added. We will see that there is no loss of
generality, because of the function that we will define, in supposing that this constant is 1. Any sample of
a different class that invades this margin will be called an impostor. Our objective, therefore, will be, in
addition to bringing each sample as close as possible to its target neighbors, to try to keep impostors as far
away as possible.

In mathematical terms, if our distance is determined by the linear transformation L € My(R), and z;, ;5 €
X with j ~ 4, we will say that z; is an impostor for these samples if y; # y; and || L(z; — x;)||* <
| L(x; — z;)||* + 1. In Figure |13 the concepts of target neighbor and impostor are graphically described.
Finally, note that the margin is defined in terms of the squared distances, instead of considering only the
distance. This will make the problem formulation easy to solve.

We now proceed to define accurately the terms of the objective function. As already mentioned, it will be
composed of two terms. The first one will penalize distant target neighbors and the second one will penalize
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Figure 13: Graphical description of target neighbors and impostors (with k = 3) for the sample x;. The blue circle represents the
margin determined by the target neighbors. All the points of different classes in this circle are impostors. LMNN’s goal will be to
bring the target neighbors as close as possible and to remove the impostors from the circle. Therefore, data of the same class that
are not target neighbors will not have any influence, and impostors will no longer be penalized as soon as they leave the margin, as
shown in right image. This gives a local nature to this learning technique.

nearby impostors. The first term is defined as

N
Epull(L) = ZZ HL(xl - $j)‘|2'

i=1 ji

The minimization of this error causes a pulling force between the data samples. The second term is defined
as

N N
epusn (L) = 30 D0 D (1= y)[L+ [1L(ai = )| = L = )2+,
i=1 ji 1=1
where y;; is a binary variable which takes the value 1 if y; = y;, and O if y; # y;, and the operator
[]+: R — Ry is defined as [2]; = max{z,0}. Thus, this error adds up when y;; = 0 (that is, z; is
in different class to x;), and the second factor is strictly positive (that is, the margin defined by the target
neighbors is exceeded). The minimization of this second term causes a pushing force between the data
samples.

Finally, the objective function results from combining these two terms. After fixing v €]0, 1], we define
E(L) = (1 - ﬂ)gpull<L) + Mgpush(L>- (15)

The authors state that, experimentally, the choice of ;1 does not cause great differences in results, so it is
usually taken x4 = 1/2. Minimizing this function will lead us to learn the distance we were looking for. Note
that this function is sub-differentiable, but not convex, so if we use a subgradient descent method under this
approach we may be stuck in a local optimal. However, we can reformulate the objective function in order
to make it act over the positive semidefinite cone. If for every L € My(R) we take M = LTL € S4(R){,
we know that ||z; — z;||3; = || L(x; — x;)||3, and consequently,

N N N
eM)= 1w Y Y e =l +p) Y D L+ lles —aglly — Il —@li]s A16)

i=1 ji i=1 ji =1

is a convex function in M that takes the same values as €(L). The minimization of £()M) in this case

is subject to the constraint M € Sd(]R)g , so the projected subgradient method, with projections onto the
positive semidefinite cone, can be used to optimize this function. In addition, we can easily calculate a
subgradient G € Je/OM given by

G:(l—u)ZOzj—l—u Z (0i; — Oir),

¥ e (i,5,)EN
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where NV is the set of triplets (¢, 7, {) for which x; is an impostor over z; with the margin determined by z;,
and O;; = (x; — x;)(z; — x;)T are the outer products obtained from the distances differentiation. The first
term of the gradient is constant, while the second term only varies in each iteration with the changes of the
impostors that enter or leave the set \. These considerations allow a fairly efficient gradient calculation.

As for dimensionality reduction, two different alternatives are presented. If we keep the optimization with
respect to M, it is not feasible to add rank restrictions, as it is shown in Example @ Therefore, the use of
PCA is suggested prior to the algorithm execution, to project the data onto its first principal components,
and then apply LMNN on the projected data. The other alternative is to optimize the objective function with
respect to L € Mg wq(R), with d’ < d using a gradient descent algorithm. In this case the optimization
is not convex, but we learn directly a linear transformation that reduces the dimensionality without making
changes in the optimization of Eq. [I5] Authors also state, based on empirical results, that this non-convex
optimization gives good results.

Other proposals made for the improvement of this algorithm consist of applying LMNN multiple times,
learning new metrics each time, and using these metrics to determine increasingly accurate target neighbors,
or learning different metrics locally. Finally, although the distance learned by LMNN is designed to be used
by the k-neighbors classifier, it is possible to use the objective function itself as a classification method.
These classification models are called energy-based. Thus, to classify a test sample z;, for each possible
label value ¥, we look for k target neighbors in the training set for class y;, and evaluate the energy for
the metric learned, finally assigning to z; the value of y; that provides the lowest energy. According to the
objective function, energy will penalize large distances between x; and its target neighbors, impostors on
the x; perimeter, and perimeters of other classes invaded by x;. Therefore,

d .
i = argmin § (1—p) > o — a3,
Yt it
> (U =ya) [L+ o — zil3r = e — @llir]
Jtnl

Y (=) [L+ e = 5l3 = Nl — zell3]

ingi

C.2.2 Neighborhood Components Analysis (NCA)

NCA [39] is another distance metric learning algorithm aimed specifically at improving the accuracy of
the nearest neighbors classifiers. Its aim is to learn a linear transformation with the goal of minimizing the
leave-one-out error expected by the nearest neighbor classification. Additionally, this transformation could
be used to reduce the dimensionality of the dataset, and thus make the classifier more efficient.

We consider the training set X = {x1,...,zy} C R?, labeled by y1,...,yn. We want to learn a distance,
determined by a linear transformation L € M(R), that optimizes the accuracy of the nearest neighbors
classifier. Ideally, we would optimize the performance of the classifier over the test dataset, but we only
have the training set. Therefore, our goal will be to try to optimize the classification leave-one-out error on
the training set. The choice of the leave-one-out error is due to the nature of the nearest neighbors classifier:
as we will learn and evaluate over the same set, the nearest neighbor of each sample would be the sample
itself, which would not allow the results to be interpreted correctly if the sample is kept while evaluating it.

However, the function that maps each transformation L to the leave-one-out error for the distance corre-
sponding to L has no guarantee of differentiability, not even continuity, so it is not easy to deal with it for
optimization (observe that the image of this function is a finite set, and its domain is a connected set, so it
cannot be continous unless it is constant, which does not happen in non-trivial examples).

To do this, NCA tries to approach the problem in a stochastic way, that is, instead of operating with the
leave-one-out error directly, it operates with its expected value for the probability that we will define below.
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Given two samples x;,z; € X, we define the probability that z; has x; as its nearest neighbor, for the
distance determined by the mapping L, as follows:

L exXp (—HLI’i — L.I‘jHZ)

Y3 exp (= Lai — Lay|?)
ki

(] 7&1)7 pilz{:()‘

Notice that, indeed, p;. defines a probability measure on the set {1, ..., N}, foreachi € {1,..., N}. Under
this probability law, we can define the probability that the sample z; is correctly classified as the sum of the
probabilities that z; has as its nearest neighbor each sample of its same class, that is

= prj,where@:{j e{l,....N}:y; = v}
JEC;

Finally, the expected number of correctly classified samples, and the function we will try to maximize, is

obtained as
N N 2
_ L_ exp (—||Lx; — La;|?)
_;pi =22 v= ZZ zexp Lz — Lag|2)

i=1 je€C; i=1 jEC; f
itk

This function is differentiable, and its derivative can be computed as

N N
L)y=2L> [p!) piOiw—Y_ 50 |,
i=1 k=1

JjeC;

where O;j = (v; — x;)(w; — x;)T represent again the outer products between the differences of the samples
in X. Once the gradient is known, we can optimize the objective function using a gradient ascent method.
Note that the objective function is not concave, and can therefore be trapped in local optima. Another issue
for this algorithm is the possibility of overfitting, if the expected leave-one-out error of the learned distance
is too low. Authors affirm, based on the experimentaal results, that normally there is no overfitting, even if
we ascend a lot in the objective function.

C.3 Algorithms to Improve Nearest Centroids Classifiers

In this block we will analyze, following the previous lines, algorithms specifically oriented to improve
distance-based classifiers, focusing in this case on the classifiers based on centroids. The algorithms we will
study are NCMML and NCMC [40]].

C.3.1 Nearest Class Mean Metric Learning (NCMML)

NCMML [40] is a distance metric learning algorithm specifically designed to improve the nearest class
mean (NCM) classifier. To do this, it uses a probabilistic approach similar to that used by NCA to improve
the accuracy of the nearest neighbors classifier.

Nearest class mean classifier, during learning process, calculates the mean vectors of each class subset.
Then, when predicting a new sample, it assigns the class of the nearest mean vector found. It is a very
efficient and simple classifier, although its simplicity makes it a rather weak classifier against datasets that
are not grouped around their mean. We will learn in the following lines how to learn a distance for this
classifier.

We consider the training set X = {x1,...,zx} C R%, with labels y1,...,yn € C, where C = {c1,..., ¢}
is the set of available classes. For each ¢ € C, we call . € R? the mean vector of the samples belonging
to the class c, that is, ., = N% Zl yi—c Tis where N, is the number of elements of X that belong to class

c. Given a linear transformation L € Mg 4(R), we will define, for each x € X and each ¢ € C, the
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probability that  will be labeled with the class ¢ (according to the nearest class mean criterion) as follows:
_exp (S - p)l?)

> exp (=3l L(z — ue)l?)

ceC

pr(clz)

Note that py,(-|z) effectively defines a probability in the set C. Once the above probability is defined, the
objective function that NCMML tries to maximize is the log-likelihood for the labeled data in the training
set, that is,

N
1
E(L) = N E IngL(yi|xi)'
i=1

This function is differentiable and its gradient is given by

N
1
VL(L) = N Z Z icL(pte — x3) (pe — xi)Tv
i=1 ceC
where a;c = pr(clz;) — [yi = ¢] and [R] denotes the indicator function for the condition R. The maxi-
mization of this function using gradient methods is the task carried out by NCMML.

C.3.2 Nearest Class with Multiple Centroids (NCMC)

Although nearest class mean classifier is a simple, intuitive and efficient classifier in both learning and
prediction processes, it has one major drawback, and that is that it assumes that classes are grouped around
their center, which is an overly restrictive hypothesis. In Figure[I4 we can see an example where NCM is
unable to give good results.

NCM NCMC
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Figure 14: Dataset where the NCM classifier does not provide good results, because the centroids of both classes are very close and
both fall between the points of class 1. We will see that, by choosing more than one centroid in an appropiate way, we can classify
this set as shown in right image.

One way to solve this problem is, instead of considering the center of each class to classify new samples, to
find subgroups within each class that present a quality grouping, and to consider the center for each of its
subgroups. In this way we would have a set of centroids for each class, and at the time of classifying a new
sample, it would suffice to select the nearest centroid and assign it the class of which it is centroid.
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In this new classifier, which we will call NCMC (nearest class with multiple centroids), the clustering
algorithms come into play. There are numerous algorithms [120]] to obtain a set of clusters from a dataset,
each with its advantages and disadvantages. Due to the form of our problem, in which we are interested not
only in obtaining a set of clusters for each class, but also a center for each cluster, the algorithm that meets
the most suitable conditions, besides being simple and efficient is k-Means.

To classify with NCMC, the use k-Means reduces to applying the segmentation algorithm within each subset
of data associated with each of the classes of the problem. In this way, we obtain in a simple way the set of
centroides we wanted for each class, and on which we can carry out the classification of new data simply
by searching for the nearest centroid. For this algorithm, as it happens with k-Means, it is necessary to
previously establish the number of centroids for each class. These numbers can be estimated by cross
validation.

Once the NCMC classifier is defined, the distance learning process [40] is similar to NCM. Following the

notation used in NCMML, in this case, instead of a set of class centers {y.}, with ¢ € C, we have a set of
centroids, {mcj }?C:l, with k. € N, for each ¢ € C. In this case, the probabilities associated with each class
for the correct prediction of x € X’ are given by pr,(c|z) = Z?C:l pr(me;|z), where the centroids are those
whose probability is defined by the softmax function

exp (=5 L(z — me;)|?)

5 8% exp (<AL — me)2)

ceCi=1

pL(ij “T) -

Again, we maximize the log-likelihood function £(L) = % Zf\; 1 pr(yilx;), whose gradient is given by

N ke
VL) = SO0 e, Llme, — wi)(me, — )",

i=1 ceC j=1

where ( )
DL \Mc; | T4

Qje; = pL(ij|xi) - [[yl - C]] ke o :

Ej’:l pL(ij/ ‘ml)

The log-likelihood maximization by gradient methods is the task carried out by the distance learning tech-
nique for NCMC classifier, which we will call with the same name as the classifier.

C.4 Information Theory Based Algorithms

In this section we will study several distance metric learning algorithms based on information theory, specif-
ically, in the Kullback-Leibler and Jeffrey divergences. Their working scheme is similar. First of all, they
establish different probability distributions on the data, and then they try to bring them closer or further away
by using the divergences. The algorithms we will study are ITML [41], DMLM]J [42]] and MCML [43]].

C.4.1 Information Theoretic Metric Learning (ITML)

ITML [41] is a distance metric learning technique whose objective is to find a metric as close as possible
to an initial distance, understanding this closeness from the point of view of relative entropy, as we will
formulate later, making that metric satisfy certain similarity constraints for the trained data.

ITML starts with a dataset X = {z1,...,an} C R?, not necessarily labeled, but for which it is known
that certain pairs of samples considered similar must be at a distance lower than or equal to u, and other
pairs of samples considered not similar must be at a distance greater than or equal to [, where u,] € R™ are
pre-defined constants, with relative small and large values, respectively, with respect to the dataset.

From the data with the indicated restrictions, ITML considers an initial distance corresponding to a positive
definite matrix My, and tries to find a positive definite matrix M, as similar as possible to My, and that
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respects the imposed similarity constraints. The way to measure the similarity between M and M is done
using information theory tools.

As we saw in Appendix [B.3] there is a correspondence between positive definite matrices and multivariate
gaussian distributions, if we fix the same mean vector p for every distribution. Given M € Sy(R)* we can
then construct a normal distribution through its density function,

1 _
(27-‘-)71/2 det(M)l/Z exp ((x — N)TM 1($ . M)) .

p(x|M) =

Reciprocally, from this distribution, if we calculate the covariance matrix, we recover the matrix M. Us-
ing this correspondence, we will measure the closeness between My and M through the Kullback-Leibler
divergence between their corresponding gaussian distributions, that is,

p(z|My)

KL (p(a|Mo))pe]0)) = [ plalMo) o 22

Once we have defined the mechanism to measure the proximity between the metrics, we can formulate
the optimization problem of the technique ITML. If we call S and D to the sets of pairs of indices on the
elements of X that represent the samples considered similar and not similar, respectively, and we start from
the initial metric My, the problem is
min KL(p(x| M, x| M
2t KL(p(al M) [p(x]1)
st: dy(ziz) <u, (i,j)€S (17)

We have seen in Theorem [3] that the Kullback-Leibler divergence between two gaussian distributions with
the same mean can be expressed in terms of the log-det matrix divergence. This allows us to reformulate
Eq.|l7|in a way that is easier to deal with computationally:

i D (Mol|| M
sin 1a(Mol| M)

st: o tr(M(z; — ;) (i —x)T) <u, (i,§) €S (18)
tr(M (x; — xj)(xz — {L‘j)T) >1, (i,j) € D.

‘We may not be able to find a metric M that simultaneously satisfies every constraint, so the problem may not
have a solution. Therefore, ITML introduces in Eq. |18|slack variables through which we obtain a problem
whose optimization establishes a trade-off between the minimization of the divergence and the fulfillment
of the constraints, in order to arrive to an approximate solution of the original problem, in case there is no
solution for this. Finally, the computational technique used in the resolution of this optimization problem is
the Bregman projections method discussed in Appendix [B.1.2]

C.4.2 Distance Metric Learning through the Maximization of the Jeffrey Divergence (DMLM]J)

DMLMIJ [42] is another distance metric learning technique based on information theory. In this case, the tool
that is used by DMLMIJ is the Jeffrey divergence, to separate as much as possible the distribution associated
with similar points from that associated to dissimilar points, in the sense that we will see below.

We consider the training set X = {z1,...,2y} C R? with corresponding labels yq, ..., yn, and we set
k € N. As we have already commented, DMLM]I tries to maximize, with respect to the Jeffrey divergence,
the separation between distributions of similar and not similar points. To do this, we will introduce several
concepts.

Definition 15. Given x; € X, the k-positive neighborhood of x; is defined as the set of the k nearest
neighbors of z; in X' \ {z;} whose class is the same as z;. It is denoted by V" (z;).

The k-negative neighborhood of z; is defined as the set of the &k nearest neighbors of x; in X whose class is
different from that of x;. It is denoted by V, (x;).
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The k-positive difference space of the labeled dataset is defined as the set
S={x;—x;: 2 € X,z; € V;[ (z;)}.

Similarly, the k-negative difference space of the labeled dataset is defined as the set
D= {a:z —Zj1x; € X,CC]‘ S Vk_(.%)}

Sets S and D represent, therefore, the vectors with the differences between the samples in X' and its k
nearest neighbors, from the same or a different class, respectively. We refer to P and () as the probability
distributions in the spaces S and D, respectively, assuming that they are multivariate gaussians. We will
also assume that both distributions have zero mean. This assumption is reasonable, since in practice, in
most cases, if x; is a neighbor of x;, x; is also a neighbor of z;, then both differences will appear in the
difference space, averaging zero. Finally, we will call the corresponding covariance matrices g and X p,
respectively.

If we now apply a linear transformation to the data, x — Lz, with L € Mgy4(R), the transformed
distributions will still have mean zero, and covariances LY. gL” and LY pL”, respectively. We will call
these distributions P, and Q1. The goal of DMLMI is to find a transformation that maximizes the Jeffrey
divergence between Py, and ()1, that is, the problem to optimize is:

LeAI/ﬁéfd(R) f(L) =JF(PLl|Qr) = KL(PL||Qr) + KL(QL|| PL)-

As it was shown in Proposition [} Jeffrey divergence between the gaussian distributions P, and ()7, can be
rewritten as

f(L) = %tr (LEsLT)y "M LEpLT) + (LEp L") N (LESLT)) — d'.

Since d’ is constant, we obtain the equivalent problem

J(L) =tr (LYY Y (L2 pL” LY p LYY LY.
Le@?fd(m (L) =tr (LXsL") " (LXpL") + (LEpL" )" (LEsL"))

Theorem tells us that, to maximize J(L), we can choose the d’ eigenvectors of EglE Ds Uly--, Vg

corresponding to the largest values of A\; + 1/)\;, with \; being the eigenvalue of 2;12 p associated with
v;, and add this eigenvectors to the rows of L. The transformation L constructed from these eigenvectors
determines the distance that is learned by the DMLM]J technique.

Finally, the only additional requirement necessary to complete the construction of L is the calculation of the
covariance matrices Xg and X p. Bearing in mind that it has been assumed that the mean of the distributions
of S and D is 0, we can obtain these matrices quite simply from the difference vectors, as shown below:

1 N
ES:@Z Yo (@i—a)(zi—z)"|,
i=1

= ijV,:r(wi)
1 N
ED = fz Z (:ci—xj)(xi—a:j)T
D2 | 2
g x; €V, ()

Let us observe that we can also see this algorithm as a dimensionality reduction algorithm and even as an
algorithm oriented to improve the nearest neighbors classifier, due to its local character.

C.4.3 Maximally Collapsing Metric Learning (MCML)

MCML [43] is a supervised distance metric learning technique, based on the idea that if all the samples of the
same class were projected to the same point, and data of different classes were projected to different points
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and sufficiently far away, we would have, over the projected data, an ideal class separation. Its purpose is to
learn a distance metric that allows to collapse as much possible, within the limitations of the metric, all the
samples of the same class in a single point, arbitrarily far from the points where the samples of the remaining
classes will collapse.

We consider the dataset X = {z1,...,zn} C R?, with corresponding labels y1, . .., yn. We want to learn
a metric determined by M € Sy(R)™" that tries to collapse the classes as much as possible according to
the approach of the previous paragraph. The way to deal with this problem will consist once again in using
the tools provided by the information theory. To do this, we first introduce a conditional distribution on the
points of the dataset, analogous to that established in the case of NCA. If i, 5 € {1,..., N}, with i # j, we
define the probability that z; will be classified with the class of x; according to the distance between z; and
x; as follows:

2
. exp(—||x; — x;
oM (jliy = 22N = mill)
27; exp(— ||z — @k/3,)
1

Furthermore, the ideal distribution we are looking for is a binary distribution for which the probability that
a sample is correctly classified is 1, and 0 otherwise, that is,

- 1, Yi = Yj
po]l XX .

Note that during the training process we know the real classes of the data, therefore we can deal with this last
probability. Besides, we can observe that if we get a metric M whose associated distribution p coincides
with pg, then, under very mild sufficiency conditions on the data, we will be able to collapse the classes in
infinitely distant points.

Indeed, suppose there are at least 4 2 samples in each class, were  is the rank of M, and that p™ (j|i) =
p°(jli) for any 4,7 € {1,...,N}. Then, on the one hand, from p™ (j|i) = 0 for y; # y;, it follows that
exp(—||z; — z]|3;) = 0, which undoubtedly leads to x; and z; being infinitely distant when their classes
are different. On the other hand, from p™ (i|j) o 1 for any z;,z; with y; = y;, it follows that the value
exp(—||w; — x;|%,) is constant for all the members of the same class, and consequently, all the points in the
same class are equidistant. As M has rank r, it is inducing a distance on a subspace of dimension r, where
it is known that at most there can be r + 1 different points and equidistant between them. Since we are
assuming that there are at least  + 2 points per class, all the points of the same class must have a distance
of 0 between them with respect to M, thus collapsing into a single point.

Once both distributions are set, the objective of MCML is, as we have already commented, to approximate
M . . . . . . . . .

p™ (+|i) to po(-|) as much as possible, for each 4, using the relative entropy between both distributions. The

optimization problem is, therefore, to minimize this divergence,

N
min  F(M) = 3"KL [pol1)l1p™ (1)]
=1

MeSy(R)F
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We can rewrite the objective function in terms of elementary functions:

ZZpoJ\ log M Z > o

=1 j5=1 i=1j: yi=y;
N
=D >, —loap"(jli)
=1 j: yi=y; i
N (19)
=-> Z s — 03— log Y exp(— i — )
i=17j: yi= ki
N
:Z > lmi =gl + ) log > exp(—|lwi — all?).
i=17: yi=y; i=1 k#i

This function is differentiable, and each summand of the previous expression is convex in M, the first
because it is a distance function in M (which is affine), and the second because it is a log-sum-exp function
(see [32]], sec. 3.1.5) composed with a distance function. In addition, the restriction M € Sd(R)ar is convex,
so we can use the projected gradient descent algorithm with projections onto the positive semidefinite cone
to optimize the objective function. This requires an expression of the gradient of the objective function,

which can be calculated from its expression in Eq. [T}

= 2 (@i — @) T (@i — @) exp(—|2i — zllfy)

Vi) = S () () =Y > exp(—|zi — zx]3,)

0] Yi=Y; { hiZi

C.5 Other Distance Metric Learning Techniques

In this section we will study some different proposals for distance metric learning techniques. The algo-
rithms we will analyze are LSI [4], DML-eig [66] and LDML [67]].

C.5.1 Learning with Side Information (LSI)

LSI [4], also sometimes referred to as MMC (Mahalanobis metric for clustering) is a distance metric learn-
ing technique that works with a dataset that is not necessarily labeled, which contains certain pairs of samples
that are known to be similar and, optionally, pairs of samples that are known not to be similar. It is possibly
one of the first algorithms that has helped make the concept of distance metric learning more well known.

LSI tries to learn a metric M that respects this additional information. This is why it can be used both in
supervised learning, where similar pairs will correspond to data with the same label, and in unsupervised
learning with similarity constraints, such as, for example, clustering problems where it is known that certain
samples must be grouped in the same cluster.

We now formulate the problem to be optimized by LSI. Suppose we have the dataset X = {x1,...,zn5} C
R4, and we know additionally the set S = {(z;,z;) € X x X': x; and z; are similar.}. In addition, we may

know the set D = {(x;,x;) € X x X': x; and x; are dissimilar.}. If we do not have the latter, we can take
D as the complement of S'in X x X

The first intuition to address this problem, given the information we have, is to minimize the distances
between pairs of similar points, that is, to minimize ), 2;)eS |z —x;]|3,, where M € Sy(R){. However,
this will lead us to the solution M = 0, which would not give us any productive information. That is why
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LSI adds the additional constraint ) | (wi,2;)€D ||zi — x;||as > 1, which leads us to the optimization problem

win Y el
(z4,x5)€S

s.t.: S mi— il > 1
(z4,x5)€D
M € Sd(R)ar.

Note several observations regarding this formula. First, the choice of constant 1 in the constraint is irrelevant;
if we choose any constant ¢ > 0 we get a metric proportional to M. Secondly, the optimization problem
is convex, because the sets determined by the restrictions are convex and the function to optimize is also
convex. Finally, we may consider a restriction on the set D of the form Z(xi,xj)e ol —zl3, > 1.

However, it is possible to rewrite that problem into a formulation similar to that used on the 2-class LDA,
where the metric learned would have a rank of 1, which may not be optimal.

To easily optimize this problem, authors propose the equivalent problem

max S mi - zllm
(z4,25)€D

s.a.: o izl <t (20)
(xi,:vj)ES
M € Sd(R)a_.

This problem with two convex constraints can be solved by a projected gradient ascent method. In this
problem, constraints are easy to satisfy separately. The first constraint consists of a projection onto an affine
half-space, while the second constraint consists of a projection onto the positive semidefinite cone. The
method of iterated projections makes it possible to fulfill both restrictions by repeteadly projecting onto
both sets until convergence is obtained.

C.5.2 Distance Metric Learning with Eigenvalue Optimization (DML-eig)

DML-eig [66] is a distance metric learning algorithm inspired by the LSI algorithm of the previous section,
proposing a very similar optimization problem but offering a completely different resolution method, based
on eigenvalue optimization.

We consider, as in the previous case, a training dataset X = {z1,...,2x} C R?, for which we know two
sets of pairs, .S and D, of data considered similar and dissimilar, respectively. In the previous section, in
order to optimize Eq. [20[an ascending gradient method with iterated projections was proposed, which may
take a long time to converge. DML-eig proposal consists of a slight modification of the objective function,
keeping the same constraints, which leads us to the problem

i |2
max - min s — 253
s.t.: > izl <1 Q1)
(wiwi)eS
M e Sd(R)a_-

To address this problem, it is useful to introduce a notation that simplifies the indexing of the data. First,
we will denote X;; = (x; — x;)(x; — z;) to the outer products between the differences of the elements
in X. To access pairs of elements (7, j) we will use a single index 7 = (7, j). This index can be assumed
ordered when necessary, to access the components of a vector of appropiate size. The previous outer product
X; can also be written as X;. Finally, for sets S and D, we also assume that they are made by indexes 7
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associated with a pair (¢, j) such that z; and z; are similar or dissimilar, respectively. Thus, if we denote
Xg = Z(i’ jes Xij, Eq. 21]can be rewritten in terms of Frobenius dot product as

max min(X,, M)

M TeD
st (Xg, M) <1 (22)
M e Sd(R)S_

Let us see how the formulation of the problem we are looking for is established in terms of eigenvalue opti-
mization. For each symmetric matrix X € S;(R) we denote its highest eigenvalue as A\pax(X). Associated
with the set D of dissimilar pairs we will define the simplex

Az{uéR'D:UTEOVTED,ZuTzl}.
T€ED

We also consider the set
P={M € ./\/ld(]R)aL: tr(M) = 1}.

P is the intersection of the positive semidefinite cone with an affine subspace of M (R). Sets with this
structure are known as spectrahedra.

So, if Xg is positive semidefinite, and we define, for each 7 € D, )Zr =X g 1 2X.,X g Y 2, we can prove
[66] that the problem given by Eq. [22]is equivalent to the following problem:

maxmin > ur(X;,S),

which in turn can be rewritten as an eigenvalue optimization problem:

i Tj(\:T7S = mi )\max sz'r . 23
mm<2 > iy (Zu ) @

T€D T€D

The problem of minimizing the largest eigenvalue of a symmetric matrix is well-known and there are some
iterative methods that allow this minimum to be reached [68]. Furthermore, Ying and Li [66] also propose

an algorithm to solve the problem maxgep minyea Y cp Ur <)~(T, S)+ 1Y cpurlogus, where > 0is
a smoothing parameter, by means of which the problem in Eq. [23|can be approximated.

C.5.3 Logistic Discriminant Metric Learning (LDML)

LDML [67] is a distance metric learning algorithm in which the optimization model makes use of the logistic
function. Authors affirm that this technique is quite useful to learn distances on sets of labeled images, being
able to be used therefore in problems like face identification.

Recall that the logistic or sigmoid function is the map o: R — R given by

B 1
C1l4e

o(x)

This function presents a graph with a sigmoidal shape, is differentiable, strictly increasing and takes values
between 0 and 1, reaching these values in their limits at infinity. These properties allow the logistic function
to be the cumulative distribution function of a random variable, which gives it an important probabilistic
utility. Its graph presents an asymptotic behaviour from small values (in absolute value), with an exponential
growth in zones close to zero. This makes logistic function very useful for modeling binary signals. It also
presents a derivative that is easy to calculate, and can be expressed in terms of the logistic function itself,

o'(z) = o(x)(1 — o(x)).
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Suppose we have the dataset X = {z1,..., 2y} C RY, with corresponding labels 1, ..., yx. In LDML,
logistic function is used to define a probability, which will assign the greater probability the smaller the
distance between points. To measure the distance, LDML will use a positive semidefinite matrix, resulting
in the expression of the probability as

pijym = o(b— dyr(zi,24)?),

where b is a positive threshold value that will determine the maximum value achievable by the logistic
function, and that can be estimated by cross validation. Associated with this probability, we can define a
random variable that follows a Bernouilli distribution, and that takes the values 0 and 1, according to whether
the pair (z;, z;) belongs to the same class. This distribution is determined by the probability mass function

fiin (@) = ijn)* (1 — pijm)t ™", x €{0,1}.

The function that LDML tries to maximize is the log-likelihood of the previous distribution for the given
dataset, that is,
N
L(M) = Z Yij log pijn + (1 — yij) log(1 — pijm),
i,j=1

where y;; is a binary variable that takes the value 1 if y; = y; and O otherwise. This function is differentiable
and concave (it is a positive combination of functions that can be expressed as a minus log-sum-exp function,
which is concave), so we have a convex maximization problem. Keeping in mind the properties of the
logistic function, if x;; = (z; — x;)(x; — xj)T and p;; = p;; m, the gradient has the expression

—ijpij (1 — pij) ipij (1 — Pij)

Y Pij ( Y 1 —pij

VL(M) =

:MZ

a@

<
Il
—_

—Yiivi5(1 = pij) + (1 = yij)zi;pij

I
IMZ

Rad

<
Il
—_

2 (1 = yiz)pij — (1 — pij)yij)

N

&
I
—

I
IMZ

zij(Pij — Yi5),

I
.MZ

-
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—

5]

The projected gradient method with projections onto the positive semidefinite cone is the semidefinite pro-
gramming algorithm that is used in LDML to obtain the metric that optimizes its objective function.

C.6 Kernel Distance Metric Learning

In this part we will analyze some of the kernelized versions of the algorithms presented throughout this
section. An introduction to the use of the kernel trick for distance metric learning was already made in
Section[3.6] Below we will study the kernel algorithms for LMNN, ANMM, DMLM]J and LDA.

C.6.1 Kernel Large Margin Nearest Neighbors (KLMNN)

KLMNN [44!|38] is the kernelized version of LMNN. In it, the data in X is sent to the feature space to learn
in that space a distance that minimizes the objective function set in the LMNN problem.

Although the problem formulated in the non-kernelized version was made with respect to a positive semidef-
inite matrix ), using the error function given in Eq. [I6] when working in feature spaces we are more in-
terested in dealing with a linear map, even if the convexity of the problem is lost, in order to be able to use
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the representer theorem. Therefore, adapting the error function proposed in Eq. |15|to the feature space, the
LMNN problem for the kernelized version consists of

N
Lelin e(L)=(1-p) ; ; IL(é (i) — ()]

N N
Fu > D> (U —ya) [+ [ L(p(x:) — p(@)|” = [ L(b (i) — b))+

i=1 j~i [=1

As a consequence of the representer theorem, it follows that, for each x; € X, Lo(z) = AK ;, where
A € My «n(R) is the matrix given by the representer theorem, and K ; represents the i-th column of the
kernel matrix for the training set. Using this in the error expression, we obtain

N
(1 —n) Y D IL(d(x) — dla)|?

i=1 joi

N N
Fu > D> (U =)L+ 1L(b(xs) — dla)]® = (D (i) — p(@) 1)+

i=1 j~i [=1
N

=(1—p) ) D IIAK: - K|

i=1 ji

N N
Y DY =y L+ [AK: = Kj)|° = A - Ko)lP+.

i=1 ji =1

The above expression depends only on A and kernel functions, and minimizing it as a function of A (we will
denote it (A)) we get the same value as minimizing £(L). Note also that the expression €(A) also requires
the calculation of target neighbors and impostors, but these depend only on the distances in the feature
space, which, as we have already seen, are computable, as shown in Eq. |1} Therefore, all the components of
¢(A) are computationally manipulable, so if we apply a gradient descent method on £(A) we can reduce the
value of the objective function, always keeping in mind that we can be stuck in a local optimum, because the
problem is not convex. Finally, once a matrix A that minimizes (A) is found, we will have determined the
corresponding map L thanks to the representer theorem, and we can use A together with the kernel functions
to transform new data.

C.6.2 Kernel Average Neighborhood Margin Maximization (KANMM)

KANMM [36] is the kernelized version of ANMM. In it, the data in & is sent to the feature space via the
map ¢: R? — F, where ANMM is applied to obtain the linear map we are looking for.

Recall that the first step for the application of ANMM was to obtain the homogeneous and heterogeneous
neighborhoods for each sample x; € &X. Note that for this calculation it is only necessary to compare
distances in the feature space, which we have seen can be done thanks to the kernel function, through Eq. [1]
We will denote the neighborhoods in the feature space as N(Z(x,) y N;(I_), respectively, for each x;.

The scatter and compactness matrices (or endomorphisms, more in general) in the feature space are given
by

oy ) sE))6) - o)

ik Sar)ENS, ) NG|
% — 3 (O(zi) — o())(d(xi) — ¢($j))T_
Z,] ¢(.Z’])EN(Z(‘LZ) |N¢($Z)|
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The problem to be optimized is therefore expressed as

max tr (L(S¢ - C¢)LT>
Lel(F,RY)

st: LLT =1.

(24)

According to the representer theorem, Ly(z;) = AK ;, where A is the matrix of coefficients of the repre-
sentation theorem and K ; represents the i-th column of the kernel matrix for the training set. Then,

L((i) — d(x5)) (i) — d(a;) LT = A(K; — K )(K; — K ;)T A",

and if we consider the matrices

- K;—Kp)(K;— KT
59 = (
N | ;x),
i,k (b(x’“)eNMn) i
T
S _ (Ki— Kj)(Ki— K;)
=Y 2

o)

i,j: ¢z )EN;?(IZ)
it follows that the average neighborhood margin is given by

AP = tr(L(S® — C?)LT) = tr(LS?LT — LC?LT) = tr(AS? AT — AC? AT = tr(A(S® — C?)AT)).

If we impose the restriction AA”T = I, Theorem (8] tells us again that we can take matrix A that which

contains as rows the eigenvectors of S¢ — C¢ corresponding to its d’ largest eigenvalues. Observe that we
can calculate both matrices from the kernel function, and the matrix A we obtain determines the linear map,
as a consequence of the representer theorem. Therefore, we have finally obtained a kernel-based method for
applying ANMM in feature spaces.

C.6.3 Kernel Distance Metric Learning through the Maximization of the Jeffrey Divergence

(KDMLM))

KDMLM] [42] is the kernelized version of DMLMIJ. In it, the data in X is sent to the feature space, where
a distance is learned after applying DMLMJ.

Again, it is possible to calculate the k-positive and k-negative neighborhoods, V, (¢(z;)) and V, (é(x;)),
for each z; € X, thanks to Eq. |1} It is not the same with the endomorphisms associated with the difference
spaces,

¥§ = |S|Z Yo (0 = dla) (@) - olw;))"

$(@;) €V, ($(x1))
1 N
=i | X ) - )l - o)
=1 o)) eV, (¢(e0)
The optimization problem is given by

max  J(L)=tr ((LE?;LT)—I(LE%LT) + (LE%LT)—l(ngLT)) :
Lel(F R

Again we have, as a consequence of the representer theorem, that Lo(x;) = AK ; for each x; € X, where
A is the matrix provided by the representer theorem, and K ; is the i-th column of the kernel matrix for the
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training set. If, reasoning as in the previous section, we define the matrices

N
1
U= EZ Y (Ki-K ) (Ki—Kj)"
=1 | g(z;)eV (d(:))
1 N
VemX | X KKK KT
=1 | §(a;)eV, (d(:)
we obtain that
tr ((LSGLT) L (EEHLT) + (LEHLT)H(LESLT)) =
tr ((AUAT)H(AVAT) + (AVAT)7H (AU AT)) .

As with DMLMJ, Theorem [I0]tells us that we can find a matrix A that maximizes this last equality by taking
the eigenvectors of U ~!V for which the value A + 1/ is maximized, where ) is the associated eigenvalue.
As matrices U and V' can be obtained from the kernel function, and A determines L by the representer
theorem, we have obtained an algorithm for the application of DMLMIJ in the feature space.

C.6.4 Kernel Discriminant Analysis (KDA)

KDA [435] is the kernelized version of linear discriminant analysis. The kernelization of this algorithm
will make it possible to find non-linear directions that nicely separate the data according to the criteria
established in the discriminant analysis. Once again, we send the data in X to the feature space using the
mapping ¢: RY — F. On that space we will apply linear discriminant analysis.

Suppose, as in LDA, that the set of possible classes is C, of cardinal r, and for each ¢ € C we define
C.={ie{l,...,N}: y; = ¢} and N, = |C,|, with ¢ the mean vector of the class ¢, and ;® the mean
vector of the whole dataset, considering it within the feature space. The problem we want to solve in this
case is

max  tr ((LSgLT)—l(LSfLT)) , (25)
Lel(FRY)

where S{f’ and S9 are the operators that measure the between-class and within-class scatter, respectively,
and are given by

Sy = (ng = u?) (g — po)"

SO =3 (¢(wi) — pd)(lai) — pd)".
ceC ieCe
Again, we use the representer theorem, so that if L € £(F,R%), then, for each = € RY,
K(':Ula $)
Lo(z) = A : ,
K(zn,z)

where A is in the conditions of the representer theorem. Let us look again for an expression of the problem
given in Eq. [25that depends only on the kernel function and the matrix A. To do this, we have to observe
that for the mean vectors of each class we have

Lpd =1 (; > qb(xi)) — Lol = 5 Y AK,

¢ iec. ¢ jece. ieCe
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where K ; is the ¢-th column of the kernel matrix for the training set. Similarly, for the global mean vector,

we have
N

Consequently,

L(pg — p®)(u¢ — p?)" LT = (Lpf — Lp®)(Lpf — Lp®)"

_ 1ZAK.Z~—1iAK.i S AK, - iAK,i '
(Nc NI ) ( NS >

iGCC ’LGCC

Note that the last expression depends only on A and the kernel function. Moreover, for z; € X with y; = ¢,
we have

L(é(xi) — uf)($lwi) — ug) LT = (Lo(xs) — Lud) (Lo (i) — Lug)"

T
= Z AK; | | AK; — — Z AK
]EC jEC
_ T AT T AT
= | AK; - Z AK; | | KT A N Z K¥A
j€Ce j€Ce
T AT T AT T T T AT
= AK ;KT AT — ZAKKA ZAKKA ZZZAKKA
]GCC geCc ¢ jecC.leC.
By summing in ¢ € C,., we obtain
> L) — pd)(p(xi) — uf)TLT
1€Ce
=) |AKKTAT - Z AKKEAT — — Z AK ;KTAT + 72 Y Y AKKTAT
iECC ]66’ ]ECC ]ECC lECC
2 1
_ T AT T AT T AT
= S ARKTAT - 2SS KK AT + 5 503 Y AR, KT A
i€Ce ¢ ieCe jece ¢ ieC. jeC. leCe
2 N,
_ T AT T AT T AT
=Y AKKTAT - EZ > AKGKLAT + 2 > AKKTA
i€Ce 1€Ce J€Ce ¢ jeC.leC.
1
_ T AT 1T AT
=) AK,K}A ~ > ) AKKEEA
ieCe € jeC. jeCe
1
= AK KTAT — AK, <N]l) KIAT

1
=AK. [T — —1) KF'AT
< N ) C ’

C

where 1 € My (R) is a square matrix with the value 1 in all its entries, and K. € My . is a kernel
matrix whose entries are the values of the kernel function between all the samples in X and the samples
with class c. Again, this last expression depends only on A and the kernel function.
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If we finally define

1
Uc:NCgC:K,iGRN,ceC
1cle

1 N
_ . N
Up= ;—1: K;€R

U=> Ne(Ue—U,) (U~ U,)" € Sn(R)

ceC
1
V=) K (I — N]l) KT € Sy(R),
ceC ¢

we can conclude that
tr ((LsgLT)*l(LSg’LT)) = tr (AVAT)" (AU AT)) ,

where U and V' are computable using the kernel function. Therefore, we obtain a problem equivalent to
the original given in Eq. [25] but in terms of A, for which Theorem [J] states that, if U is positive definite,
we can maximize the value of the trace by taking as rows of A the eigenvectors of V ~'U corresponding to
its d’ largest eigenvalues. In this way, since A determines L thanks to the representer theorem, we obtain a
kernel-based method for the application of discriminant analysis in feature spaces.
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