import os import numpy as np import torch from transformers import CLIPConfig, CLIPImageProcessor import ldm_patched.modules.model_management as model_management import modules.config from extras.safety_checker.models.safety_checker import StableDiffusionSafetyChecker from ldm_patched.modules.model_patcher import ModelPatcher safety_checker_repo_root = os.path.join(os.path.dirname(__file__), 'safety_checker') config_path = os.path.join(safety_checker_repo_root, "configs", "config.json") preprocessor_config_path = os.path.join(safety_checker_repo_root, "configs", "preprocessor_config.json") class Censor: def __init__(self): self.safety_checker_model: ModelPatcher | None = None self.clip_image_processor: CLIPImageProcessor | None = None self.load_device = torch.device('cpu') self.offload_device = torch.device('cpu') def init(self): if self.safety_checker_model is None and self.clip_image_processor is None: safety_checker_model = modules.config.downloading_safety_checker_model() self.clip_image_processor = CLIPImageProcessor.from_json_file(preprocessor_config_path) clip_config = CLIPConfig.from_json_file(config_path) model = StableDiffusionSafetyChecker.from_pretrained(safety_checker_model, config=clip_config) model.eval() self.load_device = model_management.text_encoder_device() self.offload_device = model_management.text_encoder_offload_device() model.to(self.offload_device) self.safety_checker_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) def censor(self, images: list | np.ndarray) -> list | np.ndarray: self.init() model_management.load_model_gpu(self.safety_checker_model) single = False if not isinstance(images, (list, np.ndarray)): images = [images] single = True safety_checker_input = self.clip_image_processor(images, return_tensors="pt") safety_checker_input.to(device=self.load_device) checked_images, has_nsfw_concept = self.safety_checker_model.model(images=images, clip_input=safety_checker_input.pixel_values) checked_images = [image.astype(np.uint8) for image in checked_images] if single: checked_images = checked_images[0] return checked_images default_censor = Censor().censor