import sys import modules.config import numpy as np import torch from extras.GroundingDINO.util.inference import default_groundingdino from extras.sam.predictor import SamPredictor from rembg import remove, new_session from segment_anything import sam_model_registry from segment_anything.utils.amg import remove_small_regions class SAMOptions: def __init__(self, # GroundingDINO dino_prompt: str = '', dino_box_threshold=0.3, dino_text_threshold=0.25, dino_erode_or_dilate=0, dino_debug=False, # SAM max_detections=2, model_type='vit_b' ): self.dino_prompt = dino_prompt self.dino_box_threshold = dino_box_threshold self.dino_text_threshold = dino_text_threshold self.dino_erode_or_dilate = dino_erode_or_dilate self.dino_debug = dino_debug self.max_detections = max_detections self.model_type = model_type def optimize_masks(masks: torch.Tensor) -> torch.Tensor: """ removes small disconnected regions and holes """ fine_masks = [] for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w] fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0]) masks = np.stack(fine_masks, axis=0)[:, np.newaxis] return torch.from_numpy(masks) def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras=None, sam_options: SAMOptions | None = SAMOptions) -> tuple[np.ndarray | None, int | None, int | None, int | None]: dino_detection_count = 0 sam_detection_count = 0 sam_detection_on_mask_count = 0 if image is None: return None, dino_detection_count, sam_detection_count, sam_detection_on_mask_count if extras is None: extras = {} if 'image' in image: image = image['image'] if mask_model != 'sam' or sam_options is None: result = remove( image, session=new_session(mask_model, **extras), only_mask=True, **extras ) return result, dino_detection_count, sam_detection_count, sam_detection_on_mask_count detections, boxes, logits, phrases = default_groundingdino( image=image, caption=sam_options.dino_prompt, box_threshold=sam_options.dino_box_threshold, text_threshold=sam_options.dino_text_threshold ) H, W = image.shape[0], image.shape[1] boxes = boxes * torch.Tensor([W, H, W, H]) boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2 boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2] sam_checkpoint = modules.config.download_sam_model(sam_options.model_type) sam = sam_model_registry[sam_options.model_type](checkpoint=sam_checkpoint) sam_predictor = SamPredictor(sam) final_mask_tensor = torch.zeros((image.shape[0], image.shape[1])) dino_detection_count = boxes.size(0) if dino_detection_count > 0: sam_predictor.set_image(image) if sam_options.dino_erode_or_dilate != 0: for index in range(boxes.size(0)): assert boxes.size(1) == 4 boxes[index][0] -= sam_options.dino_erode_or_dilate boxes[index][1] -= sam_options.dino_erode_or_dilate boxes[index][2] += sam_options.dino_erode_or_dilate boxes[index][3] += sam_options.dino_erode_or_dilate if sam_options.dino_debug: from PIL import ImageDraw, Image debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black") draw = ImageDraw.Draw(debug_dino_image) for box in boxes.numpy(): draw.rectangle(box.tolist(), fill="white") return np.array(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2]) masks, _, _ = sam_predictor.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes, multimask_output=False, ) masks = optimize_masks(masks) sam_detection_count = len(masks) if sam_options.max_detections == 0: sam_options.max_detections = sys.maxsize sam_objects = min(len(logits), sam_options.max_detections) for obj_ind in range(sam_objects): mask_tensor = masks[obj_ind][0] final_mask_tensor += mask_tensor sam_detection_on_mask_count += 1 final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy() mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255 mask_image = np.array(mask_image, dtype=np.uint8) return mask_image, dino_detection_count, sam_detection_count, sam_detection_on_mask_count