Hhhggv / app.py
Ffftdtd5dtft's picture
Rename main.py to app.py
5e817e6 verified
raw
history blame
8.48 kB
# Importar librerías necesarias
from unsloth import FastLanguageModel
import torch
from dotenv import load_dotenv
import os
import gc
# Cargar variables de entorno
load_dotenv()
token = os.getenv("HF_TOKEN")
# Configuración de parámetros
max_seq_length = 2048
dtype = None # None para detección automática. Float16 para Tesla T4, V100, Bfloat16 para Ampere+
load_in_4bit = True # Utilizar cuantización de 4 bits para reducir el uso de memoria
load_in_1bit = True # Utilizar cuantización de 1 bit para una mayor optimización de la memoria
optimize_storage = True # Optimizar el almacenamiento para minimizar el uso del disco
optimize_ram = True # Optimizar el uso de RAM descargando pesos no utilizados
optimize_model_space = True # Optimizar el espacio del modelo eliminando elementos inservibles
# Lista de modelos pre-cuantizados en 4bit y 1bit
quantized_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit",
"unsloth/gemma-7b-it-bnb-4bit",
"unsloth/gemma-2b-bnb-4bit",
"unsloth/gemma-2b-it-bnb-4bit",
"unsloth/gemma-7b-bnb-1bit", # Modelo cuantizado en 1 bit
"unsloth/gemma-2b-bnb-1bit", # Modelo cuantizado en 1 bit
]
# Cargar el modelo y el tokenizador
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/gemma-7b-bnb-1bit",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
load_in_1bit=load_in_1bit,
optimize_storage=optimize_storage,
optimize_ram=optimize_ram,
optimize_model_space=optimize_model_space, # Activar optimización de espacio del modelo
token=token,
)
# Agregar adaptadores LoRA
model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=3407,
use_rslora=False,
loftq_config=None,
optimize_1bit=True, # Habilitar optimización de 1 bit
)
# Optimización de almacenamiento, RAM y espacio del modelo
if optimize_storage or optimize_ram or optimize_model_space:
torch.cuda.empty_cache()
gc.collect()
# Eliminar componentes inservibles del modelo para optimizar el espacio
def prune_model(model):
layers_to_keep = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
for name, module in model.named_modules():
if name not in layers_to_keep:
delattr(model, name)
return model
if optimize_model_space:
model = prune_model(model)
if optimize_storage:
model.save_pretrained("optimized_model", max_shard_size="100MB")
if optimize_ram:
model.to_disk("optimized_model", device_map="cpu")
# Preparación de datos
from datasets import load_dataset
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return {"text": texts}
dataset = load_dataset("yahma/alpaca-cleaned", split="train")
dataset = dataset.map(formatting_prompts_func, batched=True)
# Entrenamiento del modelo
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=max_seq_length,
dataset_num_proc=20,
packing=False,
args=TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
warmup_steps=5,
max_steps=60,
learning_rate=8e-4,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
logging_steps=1,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir="outputs",
),
)
# Mostrar estadísticas de memoria actuales
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
# Entrenar el modelo
trainer_stats = trainer.train()
# Mostrar estadísticas finales de memoria y tiempo
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory * 100, 3)
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
# Inferencia
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonacci sequence.",
"1, 1, 2, 3, 5, 8",
"",
)
], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
print(tokenizer.batch_decode(outputs))
# Inferencia continua usando TextStreamer
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonacci sequence.",
"1, 1, 2, 3, 5, 8",
"",
)
], return_tensors="pt").to("cuda")
_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)
# Guardar y cargar modelos fine-tuned
model.save_pretrained("lora_model")
tokenizer.save_pretrained("lora_model")
if True:
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="lora_model",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
load_in_1bit=load_in_1bit,
optimize_storage=optimize_storage,
optimize_ram=optimize_ram,
optimize_model_space=optimize_model_space, # Activar optimización de espacio del modelo
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
alpaca_prompt.format(
"What is a famous tall tower in Paris?",
"",
"",
)
], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
print(tokenizer.batch_decode(outputs))
# Guardar en float16 para VLLM
if True: model.save_pretrained_merged("model", tokenizer, save_method="merged_16bit",)
if True: model.push_to_hub_merged("Yjhhh/model", tokenizer, save_method="merged_16bit", token=token)
# Guardar en formato GGUF
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q4_0")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q4_0", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q4_1")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q4_1", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q8")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q8", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q8_0")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q8_0", token=token)
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method="q8_1")
if True: model.push_to_hub_gguf("Yjhhh/model", tokenizer, quantization_method="q8_1", token=token)