from __future__ import annotations import gradio as gr import os import cv2 import numpy as np from PIL import Image from moviepy.editor import * from share_btn import community_icon_html, loading_icon_html, share_js import pathlib import shlex import subprocess is_shared_ui = True if "AIFILMS/ControlNet-Video" in os.environ['SPACE_ID'] else False if os.getenv('SYSTEM') == 'spaces': with open('patch') as f: subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet') base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/' names = [ 'body_pose_model.pth', 'dpt_hybrid-midas-501f0c75.pt', 'hand_pose_model.pth', 'mlsd_large_512_fp32.pth', 'mlsd_tiny_512_fp32.pth', 'network-bsds500.pth', 'upernet_global_small.pth', ] for name in names: command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}' out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}') if out_path.exists(): continue subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/') if(not is_shared_ui): from model import (DEFAULT_BASE_MODEL_FILENAME, DEFAULT_BASE_MODEL_REPO, DEFAULT_BASE_MODEL_URL, Model) model = Model() def controlnet(i, prompt, control_task, seed_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold): img= Image.open(i) np_img = np.array(img) a_prompt = "best quality, extremely detailed" n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality" num_samples = 1 image_resolution = 512 detect_resolution = 512 eta = 0.0 #low_threshold = 100 #high_threshold = 200 #value_threshold = 0.1 #distance_threshold = 0.1 #bg_threshold = 0.4 if control_task == 'Canny': result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed_in, eta, low_threshold, high_threshold) elif control_task == 'Depth': result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta) elif control_task == 'Hed': result = model.process_hed(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta) elif control_task == 'Hough': result = model.process_hough(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, value_threshold, distance_threshold) elif control_task == 'Normal': result = model.process_normal(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, bg_threshold) elif control_task == 'Pose': result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta) elif control_task == 'Scribble': result = model.process_scribble(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed_in, eta) elif control_task == 'Seg': result = model.process_seg(np_img, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta) #print(result[0]) processor_im = Image.fromarray(result[0]) processor_im.save("process_" + control_task + "_" + str(i) + ".jpeg") im = Image.fromarray(result[1]) im.save("your_file" + str(i) + ".jpeg") return "your_file" + str(i) + ".jpeg", "process_" + control_task + "_" + str(i) + ".jpeg" def change_task_options(task): if task == "Canny" : return canny_opt.update(visible=True), hough_opt.update(visible=False), normal_opt.update(visible=False) elif task == "Hough" : return canny_opt.update(visible=False),hough_opt.update(visible=True), normal_opt.update(visible=False) elif task == "Normal" : return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=True) else : return canny_opt.update(visible=False),hough_opt.update(visible=False), normal_opt.update(visible=False) def get_frames(video_in): frames = [] #resize the video clip = VideoFileClip(video_in) #check fps if clip.fps > 30: print("vide rate is over 30, resetting to 30") clip_resized = clip.resize(height=512) clip_resized.write_videofile("video_resized.mp4", fps=30) else: print("video rate is OK") clip_resized = clip.resize(height=512) clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) print("video resized to 512 height") # Opens the Video file with CV2 cap= cv2.VideoCapture("video_resized.mp4") fps = cap.get(cv2.CAP_PROP_FPS) print("video fps: " + str(fps)) i=0 while(cap.isOpened()): ret, frame = cap.read() if ret == False: break cv2.imwrite('kang'+str(i)+'.jpg',frame) frames.append('kang'+str(i)+'.jpg') i+=1 cap.release() cv2.destroyAllWindows() print("broke the video into frames") return frames, fps def convert(gif): if gif != None: clip = VideoFileClip(gif.name) clip.write_videofile("my_gif_video.mp4") return "my_gif_video.mp4" else: pass def create_video(frames, fps, type): print("building video result") clip = ImageSequenceClip(frames, fps=fps) clip.write_videofile(type + "_result.mp4", fps=fps) return type + "_result.mp4" def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold, gif_import): if(is_shared_ui): raise gr.Error("This Space doesn't work on this shared UI.") print(f""" ——————————————— {prompt} ———————————————""") # 1. break video into frames and get FPS break_vid = get_frames(video_in) frames_list= break_vid[0] fps = break_vid[1] n_frame = int(trim_value*fps) if n_frame >= len(frames_list): print("video is shorter than the cut value") n_frame = len(frames_list) # 2. prepare frames result arrays processor_result_frames = [] result_frames = [] print("set stop frames to: " + str(n_frame)) for i in frames_list[0:int(n_frame)]: controlnet_img = controlnet(i, prompt,control_task, seed_in, ddim_steps, scale, low_threshold, high_threshold, value_threshold, distance_threshold, bg_threshold) #images = controlnet_img[0] #rgb_im = images[0].convert("RGB") # exporting the image #rgb_im.save(f"result_img-{i}.jpg") processor_result_frames.append(controlnet_img[1]) result_frames.append(controlnet_img[0]) print("frame " + i + "/" + str(n_frame) + ": done;") processor_vid = create_video(processor_result_frames, fps, "processor") final_vid = create_video(result_frames, fps, "final") files = [processor_vid, final_vid] if gif_import != None: final_gif = VideoFileClip(final_vid) final_gif.write_gif("final_result.gif") final_gif = "final_result.gif" files.append(final_gif) print("finished !") return final_vid, gr.Accordion.update(visible=True), gr.Video.update(value=processor_vid, visible=True), gr.File.update(value=files, visible=True), gr.Group.update(visible=True) def clean(): return gr.Accordion.update(visible=False),gr.Video.update(value=None, visible=False), gr.Video.update(value=None), gr.File.update(value=None, visible=False), gr.Group.update(visible=False) title = """
Apply ControlNet to a video
You may also like:
For it to work, you can access the original or duplicate this Space and run it on your own profile using a GPU.
You can use other base models by specifying the repository name and filename.
The base model must be compatible with Stable Diffusion v1.5.