import streamlit as st import pickle import tensorflow as tf from tensorflow.keras.preprocessing import sequence from tensorflow.keras.saving import load_model import numpy as np import cv2 from PIL import Image st.title('Deep Learning Classifier App') task = st.selectbox('Select Task', ['Choose one','Sentiment Classification', 'Tumor Detection']) if task=='Tumor Detection': st.subheader('Tumor Detection with CNN') # CNN cnn_model = load_model("cnn_model.h5") img = st.file_uploader('Upload image:', type=['jpeg', 'jpg', 'png']) def cnn_make_prediction(img,model): img=Image.open(img) img=img.resize((128,128)) img=np.array(img) input_img = np.expand_dims(img, axis=0) res = model.predict(input_img) if res: return"Tumor Detected" else: return"No Tumor Detected" if img is not None: st.image(img, caption = "Image preview") if st.button('Submit'): pred = cnn_make_prediction(img, cnn_model) st.write(pred) if task=='Sentiment Classification': arcs = ['Perceptron', 'Backpropagation', 'DNN', 'RNN', 'LSTM'] arc = st.radio('Pick one:', arcs, horizontal=True) if arc == arcs[0]: # Perceptron with open("ppn_model.pkl",'rb') as file: perceptron = pickle.load(file) with open("ppn_tokeniser.pkl",'rb') as file: ppn_tokeniser = pickle.load(file) st.subheader('Movie Review Classification using Perceptron') inp = st.text_area('Enter message') def ppn_make_predictions(inp, model): encoded_inp = ppn_tokeniser.texts_to_sequences([inp]) padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500) res = model.predict(padded_inp) if res: return "Negative" else: return "Positive" if st.button('Check'): pred = ppn_make_predictions([inp], perceptron) st.write(pred) elif arc == arcs[1]: # BackPropogation with open("bp_model.pkl",'rb') as file: backprop = pickle.load(file) with open("bp_tokeniser.pkl",'rb') as file: bp_tokeniser = pickle.load(file) st.subheader('Movie Review Classification using Backpropagation') inp = st.text_area('Enter message') def bp_make_predictions(inp, model): encoded_inp = bp_tokeniser.texts_to_sequences([inp]) padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500) res = model.predict(padded_inp) if res: return "Negative" else: return "Positive" if st.button('Check'): pred = bp_make_predictions([inp], backprop) st.write(pred) elif arc == arcs[2]: # DNN dnn_model = load_model("dnn_model.h5") with open("dnn_tokeniser.pkl",'rb') as file: dnn_tokeniser = pickle.load(file) st.subheader('SMS Spam Classification using DNN') inp = st.text_area('Enter message') def dnn_make_predictions(inp, model): encoded_inp = dnn_tokeniser.texts_to_sequences(inp) padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post') res = (model.predict(padded_inp) > 0.5).astype("int32") if res: return "Spam" else: return "Ham" if st.button('Check'): pred = dnn_make_predictions([inp], dnn_model) st.write(pred) elif arc == arcs[3]: # RNN rnn_model = load_model("rnn_model.h5") with open("rnn_tokeniser.pkl",'rb') as file: rnn_tokeniser = pickle.load(file) st.subheader('SMS Spam Classification using RNN') inp = st.text_area('Enter message') def rnn_make_predictions(inp, model): encoded_inp = rnn_tokeniser.texts_to_sequences(inp) padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post') res = (model.predict(padded_inp) > 0.5).astype("int32") if res: return "Spam" else: return "Ham" if st.button('Check'): pred = rnn_make_predictions([inp], rnn_model) st.write(pred) elif arc == arcs[4]: # LSTM lstm_model = load_model("lstm_model.h5") with open("lstm_tokeniser.pkl",'rb') as file: lstm_tokeniser = pickle.load(file) st.subheader('Movie Review Classification using LSTM') inp = st.text_area('Enter message') def lstm_make_predictions(inp, model): inp = lstm_tokeniser.texts_to_sequences(inp) inp = sequence.pad_sequences(inp, maxlen=500) res = (model.predict(inp) > 0.5).astype("int32") if res: return "Negative" else: return "Positive" if st.button('Check'): pred = lstm_make_predictions([inp], lstm_model) st.write(pred)