import argparse import os import time from os import path cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path import gradio as gr import torch from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from scheduling_tcd import TCDScheduler torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, use_safetensors=True) pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, safety_checker=None) pipe.to(device="cuda", dtype=torch.float16) pipe.load_lora_weights("ByteDance/Hyper-SD", weight_name="Hyper-SD15-1step-lora.safetensors", adapter_name="default") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing") with gr.Blocks() as demo: with gr.Column(): with gr.Row(): with gr.Column(): num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True) steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True) eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True) controlnet_scale = gr.Number(label="ControlNet Conditioning Scale", value=1.0, interactive=True) prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True) seed = gr.Number(label="Seed", value=3413, interactive=True) scribble = gr.Image(source="canvas", tool="color-sketch", shape=(512, 512), height=768, width=768, type="pil") btn = gr.Button(value="run") with gr.Column(): output = gr.Gallery(height=768) def process_image(steps, prompt, controlnet_scale, eta, seed, scribble, num_images): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"): return pipe( prompt=[prompt]*num_images, image=[scribble]*num_images, generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=steps, guidance_scale=0., eta=eta, controlnet_conditioning_scale=controlnet_scale ).images reactive_controls = [steps, prompt, controlnet_scale, eta, seed, scribble, num_images] for control in reactive_controls: control.change(fn=process_image, inputs=reactive_controls, outputs=[output]) btn.click(process_image, inputs=reactive_controls, outputs=[output]) if __name__ == "__main__": # parser = argparse.ArgumentParser() # parser.add_argument("--port", default=7891, type=int) # args = parser.parse_args() # demo.launch(server_name="0.0.0.0", server_port=args.port) demo.launch()