import gradio as gr from pyannote.audio import Pipeline from transformers import pipeline asr = pipeline( "automatic-speech-recognition", model="facebook/wav2vec2-large-960h-lv60-self", feature_extractor="facebook/wav2vec2-large-960h-lv60-self", ) speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation") def segmentation(audio): speaker_output = speaker_segmentation(audio) text_output = asr(audio,return_timestamps="word") full_text = text_output['text'].lower() chunks = text_output['chunks'] diarized_output = "" i = 0 for turn, _, speaker in speaker_output.itertracks(yield_label=True): diarized = "" while i < len(chunks) and chunks[i]['timestamp'][1] <= turn.end: diarized += chunks[i]['text'].lower() + ' ' i += 1 if diarized != "": diarized_output += "{}: ''{}'' from {:.3f}-{:.3f}\n".format(speaker,diarized,turn.start,turn.end) return diarized_output, full_text inputs = gr.inputs.Audio(source="upload", type="filepath", label="Upload your audio file here:") outputs = [gr.outputs.Textbox(type="auto", label="Diarized Output"), gr.outputs.Textbox(type="auto",label="Full Text")] examples = [["TestAudio1.wav"],] app = gr.Interface(fn=segmentation, inputs=inputs, outputs=outputs, examples=examples, allow_flagging=False) app.launch()