import numpy as np import gradio as gr import os import pandas as pd from datasets import load_dataset from sklearn.metrics.pairwise import cosine_similarity import plotly.express as px Secret_token = os.getenv('token') dataset = load_dataset("FDSRashid/embed_matn") df = dataset["train"].to_pandas() taraf_max = np.max(df['taraf_ID'].unique()) def plot_similarity_score(taraf_num): embed_taraf = df[df['taraf_ID']== taraf_num]['embed'].to_list() cos_score = cosine_similarity(embed_taraf) fig = px.imshow(cos_score) fig.write_html("test1.html") return 'test1.html' with gr.Blocks() as demo: taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) btn = gr.Button('Submit') btn.click(fn = plot_similarity_score, inputs = [taraf_number], outputs = [gr.HTML()]) demo.launch()