import requests from PIL import Image from io import BytesIO from numpy import asarray import gradio as gr import numpy as np from math import ceil from huggingface_hub import from_pretrained_keras r = requests.get( 'https://api.nasa.gov/planetary/apod?api_key=0eyGPKWmJmE5Z0Ijx25oG56ydbTKWE2H75xuEefx') result = r.json() receive = requests.get(result['url']) img = Image.open(BytesIO(receive.content)).convert('RGB') model = from_pretrained_keras("GIanlucaRub/autoencoder_model_d_0") def double_res(input_image): input_height = input_image.shape[0] input_width = input_image.shape[1] height = ceil(input_height/128) width = ceil(input_width/128) expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8) np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image) output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32) for i in range(height): for j in range(width): temp_slice = expanded_input_image[i * 128:(i+1)*128, j*128:(j+1)*128]/255 upsampled_slice = model.predict(temp_slice[np.newaxis, ...]) np.copyto(output_image[i*256:(i+1)*256, j * 256:(j+1)*256], upsampled_slice[0]) if i != 0 and j != 0 and i != height-1 and j != width-1: # removing inner borders right_slice = expanded_input_image[i * 128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255 right_upsampled_slice = model.predict( right_slice[np.newaxis, ...]) resized_right_slice = right_upsampled_slice[0][64:192, 64:192] np.copyto(output_image[i*256+64:(i+1)*256-64, (j+1)*256-64:(j+1)*256+64], resized_right_slice) left_slice = expanded_input_image[i * 128:(i+1)*128, j*128-64:(j)*128+64]/255 left_upsampled_slice = model.predict( left_slice[np.newaxis, ...]) resized_left_slice = left_upsampled_slice[0][64:192, 64:192] np.copyto(output_image[i*256+64:(i+1)*256-64, j*256-64:j*256+64], resized_left_slice) upper_slice = expanded_input_image[( i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255 upper_upsampled_slice = model.predict( upper_slice[np.newaxis, ...]) resized_upper_slice = upper_upsampled_slice[0][64:192, 64:192] np.copyto(output_image[(i+1)*256-64:(i+1)*256+64, j*256+64:(j+1)*256-64], resized_upper_slice) lower_slice = expanded_input_image[i * 128-64:i*128+64, j*128:(j+1)*128]/255 lower_upsampled_slice = model.predict( lower_slice[np.newaxis, ...]) resized_lower_slice = lower_upsampled_slice[0][64:192, 64:192] np.copyto(output_image[i*256-64:i*256+64, j*256+64:(j+1)*256-64], resized_lower_slice) # removing angles lower_right_slice = expanded_input_image[i * 128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255 lower_right_upsampled_slice = model.predict( lower_right_slice[np.newaxis, ...]) resized_lower_right_slice = lower_right_upsampled_slice[0][64:192, 64:192] np.copyto(output_image[i*256-64:i*256+64, (j+1) * 256-64:(j+1)*256+64], resized_lower_right_slice) lower_left_slice = expanded_input_image[i * 128-64:i*128+64, j*128-64:j*128+64]/255 lower_left_upsampled_slice = model.predict( lower_left_slice[np.newaxis, ...]) resized_lower_left_slice = lower_left_upsampled_slice[0][64:192, 64:192] np.copyto( output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice) resized_output_image = output_image[0:input_height*2, 0:input_width*2] return resized_output_image with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Label("Original image") input_img = gr.Image(img) with gr.Column(): gr.Label("Image with resolution doubled") numpydata = asarray(img) output = double_res(numpydata) # numpy.ndarray input_img = gr.Image(output) demo.launch()