import pandas as pd import streamlit as st def load_data(): try: df = pd.read_csv('data/music_data.csv', on_bad_lines='skip') # st.write("**Raw Data Sample:**", df.head()) # Temporary for debugging, will be removed except FileNotFoundError: st.error("Error: 'data/music_data.csv' not found. Please ensure the file exists.") return pd.DataFrame() except Exception as e: st.error(f"Error loading raw data: {e}") return pd.DataFrame() if df.empty: st.warning("Warning: Loaded DataFrame is empty. Check the CSV content.") return df if 'Album Release Date' not in df.columns: st.error("'Album Release Date' column missing from CSV") return df df['Year'] = pd.to_datetime(df['Album Release Date'], errors='coerce').dt.year df['Year'] = df['Year'].fillna(0).astype(int) df['Decade'] = (df['Year'] // 10 * 10).astype(int) # Remove rows where Decade is 0 df = df[df['Decade'] != 0] df['Genres'] = df['Artist Genres'].fillna('Unknown').str.split(',').apply(lambda x: [g.strip() for g in x]) df['Popularity'] = pd.to_numeric(df['Popularity'], errors='coerce').fillna(0) if 'Decade' not in df.columns: st.error("Failed to create 'Decade' column") return df # Removed Processed Data Sample output as per requirement return df