Milad Alshomary
commited on
Commit
Β·
3269340
1
Parent(s):
ce8f806
changes to work with reddit data
Browse files- app.py +12 -11
- cluster_corpus.py +4 -0
- config/config.yaml +11 -2
- precompute_caches.py +3 -2
- prepare_data.py +140 -0
- utils/clustering_utils.py +29 -6
- utils/ui.py +1 -6
- utils/visualizations.py +3 -3
app.py
CHANGED
|
@@ -26,14 +26,14 @@ def load_config(path="config/config.yaml"):
|
|
| 26 |
cfg = load_config()
|
| 27 |
|
| 28 |
|
| 29 |
-
download_file_override(cfg.get('interp_space_url'), cfg.get('interp_space_path'))
|
| 30 |
-
download_file_override(cfg.get('instances_to_explain_url'), cfg.get('instances_to_explain_path'))
|
| 31 |
-
download_file_override(cfg.get('gram2vec_feats_url'), cfg.get('gram2vec_feats_path'))
|
| 32 |
-
download_file_override(cfg.get('embeddings_cache_url'), cfg.get('embeddings_cache_path'))
|
| 33 |
-
download_file_override(cfg.get('zoom_cache_url'), cfg.get('zoom_cache_path'))
|
| 34 |
-
download_file_override(cfg.get('region_cache_url'), cfg.get('region_cache_path'))
|
| 35 |
-
download_file_override(cfg.get('tsne_cache_url'), cfg.get('tsne_cache_path'))
|
| 36 |
-
download_file_override(cfg.get('llm_style_features_cache_url'), cfg.get('llm_style_features_cache_path'))
|
| 37 |
|
| 38 |
from utils.visualizations import *
|
| 39 |
from utils.llm_feat_utils import *
|
|
@@ -64,8 +64,10 @@ def validate_ground_truth(gt1, gt2, gt3):
|
|
| 64 |
def app(share=False):
|
| 65 |
instances, instance_ids = get_instances(cfg['instances_to_explain_path'])
|
| 66 |
|
| 67 |
-
interp = load_interp_space(cfg)
|
| 68 |
-
clustered_authors_df = interp['clustered_authors_df']
|
|
|
|
|
|
|
| 69 |
|
| 70 |
with gr.Blocks(title="Author Attribution Explainability Tool") as demo:
|
| 71 |
# ββ Big Centered Title ββββββββββββββββββββββββββββββββββββββββββ
|
|
@@ -227,7 +229,6 @@ def app(share=False):
|
|
| 227 |
load_button = gr.Button("Load Task & Generate Embeddings")
|
| 228 |
|
| 229 |
# ββ HTML outputs for author texts βββββββββββββββββββββββββββ
|
| 230 |
-
default_outputs = load_instance(0, instances)
|
| 231 |
#dont need defaults since they are loaded only on click of the load button
|
| 232 |
header = gr.HTML()
|
| 233 |
mystery = gr.HTML()
|
|
|
|
| 26 |
cfg = load_config()
|
| 27 |
|
| 28 |
|
| 29 |
+
# download_file_override(cfg.get('interp_space_url'), cfg.get('interp_space_path'))
|
| 30 |
+
# download_file_override(cfg.get('instances_to_explain_url'), cfg.get('instances_to_explain_path'))
|
| 31 |
+
# download_file_override(cfg.get('gram2vec_feats_url'), cfg.get('gram2vec_feats_path'))
|
| 32 |
+
# download_file_override(cfg.get('embeddings_cache_url'), cfg.get('embeddings_cache_path'))
|
| 33 |
+
# download_file_override(cfg.get('zoom_cache_url'), cfg.get('zoom_cache_path'))
|
| 34 |
+
# download_file_override(cfg.get('region_cache_url'), cfg.get('region_cache_path'))
|
| 35 |
+
# download_file_override(cfg.get('tsne_cache_url'), cfg.get('tsne_cache_path'))
|
| 36 |
+
# download_file_override(cfg.get('llm_style_features_cache_url'), cfg.get('llm_style_features_cache_path'))
|
| 37 |
|
| 38 |
from utils.visualizations import *
|
| 39 |
from utils.llm_feat_utils import *
|
|
|
|
| 64 |
def app(share=False):
|
| 65 |
instances, instance_ids = get_instances(cfg['instances_to_explain_path'])
|
| 66 |
|
| 67 |
+
#interp = load_interp_space(cfg)
|
| 68 |
+
#clustered_authors_df = interp['clustered_authors_df']
|
| 69 |
+
clustered_authors_df = pickle.load(open(cfg['background_authors_df_path'], 'rb'))
|
| 70 |
+
|
| 71 |
|
| 72 |
with gr.Blocks(title="Author Attribution Explainability Tool") as demo:
|
| 73 |
# ββ Big Centered Title ββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 229 |
load_button = gr.Button("Load Task & Generate Embeddings")
|
| 230 |
|
| 231 |
# ββ HTML outputs for author texts βββββββββββββββββββββββββββ
|
|
|
|
| 232 |
#dont need defaults since they are loaded only on click of the load button
|
| 233 |
header = gr.HTML()
|
| 234 |
mystery = gr.HTML()
|
cluster_corpus.py
CHANGED
|
@@ -85,6 +85,7 @@ def main():
|
|
| 85 |
corpus_df = load_corpus(args.corpus_path)
|
| 86 |
test_corpus_df = load_corpus(args.test_corpus_path)
|
| 87 |
|
|
|
|
| 88 |
# 2. Generate style embeddings
|
| 89 |
print(f"\nGenerating style embeddings with model: {args.model_name}")
|
| 90 |
# The function returns two dataframes, we are only interested in the first one here.
|
|
@@ -117,6 +118,9 @@ def main():
|
|
| 117 |
metric=args.metric
|
| 118 |
)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 120 |
# 4. Save the results
|
| 121 |
output_dir = os.path.dirname(args.output_path)
|
| 122 |
if output_dir:
|
|
|
|
| 85 |
corpus_df = load_corpus(args.corpus_path)
|
| 86 |
test_corpus_df = load_corpus(args.test_corpus_path)
|
| 87 |
|
| 88 |
+
#print(corpus_df)
|
| 89 |
# 2. Generate style embeddings
|
| 90 |
print(f"\nGenerating style embeddings with model: {args.model_name}")
|
| 91 |
# The function returns two dataframes, we are only interested in the first one here.
|
|
|
|
| 118 |
metric=args.metric
|
| 119 |
)
|
| 120 |
|
| 121 |
+
# remove authors with cluster label == -1
|
| 122 |
+
clustered_df = clustered_df[clustered_df['cluster_label'] != -1]
|
| 123 |
+
|
| 124 |
# 4. Save the results
|
| 125 |
output_dir = os.path.dirname(args.output_path)
|
| 126 |
if output_dir:
|
config/config.yaml
CHANGED
|
@@ -1,22 +1,31 @@
|
|
| 1 |
# config.yaml
|
| 2 |
-
instances_to_explain_path: "./datasets/hrs_explanations_luar_clusters_2_35_balanced.json"
|
| 3 |
-
instances_to_explain_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/hrs_explanations_luar_clusters_2_35_balanced.json?download=true"
|
|
|
|
|
|
|
| 4 |
interp_space_path: "./datasets/sentence_luar_interp_space_2_35/"
|
| 5 |
interp_space_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/sentence_luar_interp_space_2_35.zip?download=true"
|
|
|
|
| 6 |
gram2vec_feats_path: "./datasets/gram2vec_feats.csv"
|
| 7 |
gram2vec_feats_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/gram2vec_feats.csv?download=true"
|
| 8 |
|
| 9 |
embeddings_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/embeddings_cache.zip?download=true"
|
| 10 |
embeddings_cache_path: "./datasets/embeddings_cache/"
|
|
|
|
| 11 |
zoom_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/zoom_cache.zip?download=true"
|
| 12 |
zoom_cache_path: "./datasets/zoom_cache/"
|
|
|
|
| 13 |
region_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/region_cache.zip?download=true"
|
| 14 |
region_cache_path: "./datasets/region_cache/"
|
|
|
|
| 15 |
tsne_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/tsne_cache.pkl?download=true"
|
| 16 |
tsne_cache_path: "./datasets/tsne_cache.pkl"
|
|
|
|
| 17 |
llm_style_features_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/feature_spans_cache.zip?download=true"
|
| 18 |
llm_style_features_cache_path: "./datasets/feature_spans_cache/"
|
| 19 |
|
|
|
|
|
|
|
| 20 |
style_feat_clm: "llm_tfidf_weights"
|
| 21 |
top_k: 10
|
| 22 |
only_llm_feats: false
|
|
|
|
| 1 |
# config.yaml
|
| 2 |
+
#instances_to_explain_path: "./datasets/hrs_explanations_luar_clusters_2_35_balanced.json"
|
| 3 |
+
#instances_to_explain_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/hrs_explanations_luar_clusters_2_35_balanced.json?download=true"
|
| 4 |
+
instances_to_explain_path: "./datasets/reddit_explanation_sample.json"
|
| 5 |
+
|
| 6 |
interp_space_path: "./datasets/sentence_luar_interp_space_2_35/"
|
| 7 |
interp_space_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/sentence_luar_interp_space_2_35.zip?download=true"
|
| 8 |
+
|
| 9 |
gram2vec_feats_path: "./datasets/gram2vec_feats.csv"
|
| 10 |
gram2vec_feats_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/gram2vec_feats.csv?download=true"
|
| 11 |
|
| 12 |
embeddings_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/embeddings_cache.zip?download=true"
|
| 13 |
embeddings_cache_path: "./datasets/embeddings_cache/"
|
| 14 |
+
|
| 15 |
zoom_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/zoom_cache.zip?download=true"
|
| 16 |
zoom_cache_path: "./datasets/zoom_cache/"
|
| 17 |
+
|
| 18 |
region_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/region_cache.zip?download=true"
|
| 19 |
region_cache_path: "./datasets/region_cache/"
|
| 20 |
+
|
| 21 |
tsne_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/tsne_cache.pkl?download=true"
|
| 22 |
tsne_cache_path: "./datasets/tsne_cache.pkl"
|
| 23 |
+
|
| 24 |
llm_style_features_cache_url: "https://huggingface.co/datasets/miladalsh/explanation_tool_files/resolve/main/feature_spans_cache.zip?download=true"
|
| 25 |
llm_style_features_cache_path: "./datasets/feature_spans_cache/"
|
| 26 |
|
| 27 |
+
background_authors_df_path: "./datasets/reddit_clustered_authors.pkl"
|
| 28 |
+
|
| 29 |
style_feat_clm: "llm_tfidf_weights"
|
| 30 |
top_k: 10
|
| 31 |
only_llm_feats: false
|
precompute_caches.py
CHANGED
|
@@ -45,8 +45,9 @@ def precompute_all_caches(
|
|
| 45 |
print(f"Configuration loaded from {config_path}")
|
| 46 |
print(f"config : \n{cfg}")
|
| 47 |
instances, instance_ids = get_instances(cfg['instances_to_explain_path'])
|
| 48 |
-
interp = load_interp_space(cfg)
|
| 49 |
-
clustered_authors_df = interp['clustered_authors_df']
|
|
|
|
| 50 |
|
| 51 |
if instances_to_process is None:
|
| 52 |
instances_to_process = instance_ids
|
|
|
|
| 45 |
print(f"Configuration loaded from {config_path}")
|
| 46 |
print(f"config : \n{cfg}")
|
| 47 |
instances, instance_ids = get_instances(cfg['instances_to_explain_path'])
|
| 48 |
+
# interp = load_interp_space(cfg)
|
| 49 |
+
# clustered_authors_df = interp['clustered_authors_df']
|
| 50 |
+
clustered_authors_df = pickle.load(open(cfg['background_authors_df_path'], 'rb'))
|
| 51 |
|
| 52 |
if instances_to_process is None:
|
| 53 |
instances_to_process = instance_ids
|
prepare_data.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import argparse
|
| 3 |
+
import csv
|
| 4 |
+
import sys
|
| 5 |
+
import copy
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import glob
|
| 12 |
+
from sklearn.preprocessing import minmax_scale
|
| 13 |
+
import random
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import pickle
|
| 17 |
+
|
| 18 |
+
import json
|
| 19 |
+
import pandas as pd
|
| 20 |
+
|
| 21 |
+
def sample_ds(input_file, output_file, num_insts=10000, min_num_text_per_inst=0, max_num_text_per_inst=3):
|
| 22 |
+
"""
|
| 23 |
+
sample_ds('/mnt/swordfish-pool2/nikhil/raw_all/test_queries.jsonl', '/mnt/swordfish-pool2/milad/hiatus-data/reddit_cluster_test.pkl',
|
| 24 |
+
num_insts=10000,
|
| 25 |
+
min_num_text_per_inst=3,
|
| 26 |
+
max_num_text_per_inst=10)
|
| 27 |
+
|
| 28 |
+
sample_ds('/mnt/swordfish-pool2/nikhil/raw_all/data.jsonl', '/mnt/swordfish-pool2/milad/hiatus-data/reddit_cluster_training.pkl',
|
| 29 |
+
num_insts=10000,
|
| 30 |
+
min_num_text_per_inst=3,
|
| 31 |
+
max_num_text_per_inst=10)
|
| 32 |
+
"""
|
| 33 |
+
f = open(input_file)
|
| 34 |
+
out_list = []
|
| 35 |
+
for i in range(num_insts):
|
| 36 |
+
json_obj = json.loads(f.readline())
|
| 37 |
+
if len(json_obj['syms']) < min_num_text_per_inst:
|
| 38 |
+
continue
|
| 39 |
+
|
| 40 |
+
out_list.append({
|
| 41 |
+
'fullText': json_obj['syms'][:max_num_text_per_inst],
|
| 42 |
+
'authorID': json_obj['author_id']
|
| 43 |
+
})
|
| 44 |
+
df = pd.DataFrame(out_list)
|
| 45 |
+
df.to_pickle(output_file)
|
| 46 |
+
|
| 47 |
+
def get_reddit_data(input_path, random_seed=123, num_instances=50, num_documents_per_author=4):
|
| 48 |
+
|
| 49 |
+
df = pd.read_pickle(open(input_path, 'rb'))
|
| 50 |
+
output_objs = []
|
| 51 |
+
|
| 52 |
+
for idx, row in df.iterrows():
|
| 53 |
+
|
| 54 |
+
# Get the current author's documents
|
| 55 |
+
query_author_df = df[df.authorID == row['authorID']]
|
| 56 |
+
# split the author's documents into two: query and correct author
|
| 57 |
+
author_documents = query_author_df.fullText.tolist()[0]
|
| 58 |
+
|
| 59 |
+
if len(author_documents) < num_documents_per_author * 2:
|
| 60 |
+
continue
|
| 61 |
+
|
| 62 |
+
query_documents = author_documents[:num_documents_per_author]
|
| 63 |
+
correct_documents = author_documents[num_documents_per_author:]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Sample two *other* authors
|
| 67 |
+
other_authors_df = df[df.authorID != row['authorID']]
|
| 68 |
+
other_two_authors = other_authors_df.sample(2, random_state=random_seed)
|
| 69 |
+
|
| 70 |
+
output_objs.append({
|
| 71 |
+
"Q_authorID": str(row["authorID"]),
|
| 72 |
+
"Q_fullText": query_documents,
|
| 73 |
+
"a0_authorID": str(other_two_authors.iloc[0]["authorID"]),
|
| 74 |
+
"a0_fullText": other_two_authors.iloc[0]["fullText"][:num_documents_per_author],
|
| 75 |
+
"a1_authorID": str(other_two_authors.iloc[1]["authorID"]),
|
| 76 |
+
"a1_fullText": other_two_authors.iloc[1]["fullText"][:num_documents_per_author],
|
| 77 |
+
"a2_authorID": str(row["authorID"]) + "_correct",
|
| 78 |
+
"a2_fullText": correct_documents,
|
| 79 |
+
"gt_idx": 2
|
| 80 |
+
})
|
| 81 |
+
random_seed += 1 # Increment seed to get different authors for the next task
|
| 82 |
+
if len(output_objs) >= num_instances:
|
| 83 |
+
break
|
| 84 |
+
|
| 85 |
+
return output_objs
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def get_iarapa_pilot_data(input_path):
|
| 89 |
+
for data_point in glob.glob(input_path + '*/'):
|
| 90 |
+
candidates_file = list(glob.glob(data_point + '/data/*_candidates.jsonl'))[0]
|
| 91 |
+
queries_file = list(glob.glob(data_point + '/data/*_queries.jsonl'))[0]
|
| 92 |
+
grount_truth_file = list(glob.glob(data_point + '/groundtruth/*_groundtruth.npy'))[0]
|
| 93 |
+
q_labels_file = glob.glob(data_point + '/groundtruth/*_query-labels.txt')[0]
|
| 94 |
+
c_labels_file = glob.glob(data_point + '/groundtruth/*_candidate-labels.txt')[0]
|
| 95 |
+
|
| 96 |
+
candidates_df = pd.read_json(candidates_file, lines=True)
|
| 97 |
+
queries_df = pd.read_json(queries_file, lines=True)
|
| 98 |
+
|
| 99 |
+
queries_df['authorID'] = queries_df.authorIDs.apply(lambda x: x[0])
|
| 100 |
+
candidates_df['authorID'] = candidates_df.authorSetIDs.apply(lambda x: x[0])
|
| 101 |
+
|
| 102 |
+
queries_df = queries_df.groupby('authorID').agg({'fullText': lambda x: list(x)}).reset_index()
|
| 103 |
+
candidates_df = candidates_df.groupby('authorID').agg({'fullText': lambda x: list(x)}).reset_index()
|
| 104 |
+
|
| 105 |
+
ground_truth_assignment = np.load(open(grount_truth_file, 'rb'))
|
| 106 |
+
candidate_authors = [a[2:-3] for a in open(c_labels_file).read().split('\n')][:-1]
|
| 107 |
+
query_authors = [a[2:-3] for a in open(q_labels_file).read().split('\n')][:-1]
|
| 108 |
+
|
| 109 |
+
#print(ground_truth_assignment)
|
| 110 |
+
#print(candidate_authors)
|
| 111 |
+
#print(query_authors)
|
| 112 |
+
yield query_authors, candidate_authors, queries_df, candidates_df, ground_truth_assignment
|
| 113 |
+
|
| 114 |
+
def main():
|
| 115 |
+
"""
|
| 116 |
+
Main entry point for the script.
|
| 117 |
+
"""
|
| 118 |
+
parser = argparse.ArgumentParser(description="Prepare Reddit data for author attribution tasks.")
|
| 119 |
+
parser.add_argument("input_path", type=str, help="Path to the input pandas DataFrame pickle file.")
|
| 120 |
+
parser.add_argument("output_path", type=str, help="Path to save the output JSON file.")
|
| 121 |
+
parser.add_argument("--random_seed", type=int, default=123, help="Random seed for sampling.")
|
| 122 |
+
parser.add_argument("--num_docs", type=int, default=5, help="Number of documents per author for query and correct sets.")
|
| 123 |
+
|
| 124 |
+
args = parser.parse_args()
|
| 125 |
+
|
| 126 |
+
print(f"Processing data from: {args.input_path}")
|
| 127 |
+
output_data = get_reddit_data(
|
| 128 |
+
input_path=args.input_path,
|
| 129 |
+
random_seed=args.random_seed,
|
| 130 |
+
num_documents_per_author=args.num_docs
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
print(f"Saving {len(output_data)} tasks to: {args.output_path}")
|
| 134 |
+
with open(args.output_path, 'w') as f:
|
| 135 |
+
json.dump(output_data, f, indent=4)
|
| 136 |
+
|
| 137 |
+
print("Done.")
|
| 138 |
+
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
main()
|
utils/clustering_utils.py
CHANGED
|
@@ -7,6 +7,7 @@ from sklearn.metrics import silhouette_score
|
|
| 7 |
from sklearn.metrics.pairwise import cosine_distances, cosine_similarity
|
| 8 |
from scipy.stats import pearsonr, ConstantInputWarning
|
| 9 |
from typing import List, Dict, Any
|
|
|
|
| 10 |
|
| 11 |
import json
|
| 12 |
|
|
@@ -99,6 +100,7 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 99 |
|
| 100 |
embeddings_list = background_corpus_df[embedding_clm].tolist()
|
| 101 |
|
|
|
|
| 102 |
X_list = []
|
| 103 |
original_indices = [] # To map results back to the original DataFrame's indices
|
| 104 |
|
|
@@ -148,17 +150,23 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 148 |
print(f"Applying PCA to reduce dimensions from {X.shape[1]} to {pca_dimensions}...")
|
| 149 |
pca = PCA(n_components=pca_dimensions, random_state=42)
|
| 150 |
X = pca.fit_transform(X)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
# If a test set is provided, transform its embeddings using the same PCA model
|
| 153 |
if test_corpus_df is not None:
|
| 154 |
test_embeddings_matrix = _safe_embeddings_to_matrix(test_corpus_df[embedding_clm])
|
| 155 |
-
if test_embeddings_matrix.ndim == 2 and test_embeddings_matrix.shape[1] == pca.n_features_in_:
|
| 156 |
print(f"Transforming test set embeddings with the same PCA model...")
|
| 157 |
transformed_test_embeddings = pca.transform(test_embeddings_matrix)
|
| 158 |
# Update the test DataFrame's embedding column with the reduced embeddings
|
|
|
|
| 159 |
test_corpus_df[embedding_clm] = list(transformed_test_embeddings)
|
| 160 |
else:
|
| 161 |
-
print("Warning: Could not apply PCA to test set
|
|
|
|
| 162 |
|
| 163 |
# For cosine metric, normalize embeddings to unit length.
|
| 164 |
# This is standard practice as cosine similarity is equivalent to Euclidean
|
|
@@ -167,7 +175,10 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 167 |
if metric == 'cosine':
|
| 168 |
from sklearn.preprocessing import normalize
|
| 169 |
print("Normalizing embeddings for cosine distance...")
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
# Also normalize the test corpus embeddings if they exist
|
| 173 |
if test_corpus_df is not None:
|
|
@@ -178,11 +189,11 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 178 |
test_corpus_df[embedding_clm] = list(normalized_test_embeddings)
|
| 179 |
else:
|
| 180 |
print("Warning: Could not normalize test set embeddings due to invalid data.")
|
| 181 |
-
|
| 182 |
if eps_values is None:
|
| 183 |
if metric == 'cosine':
|
| 184 |
#eps_values = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
|
| 185 |
-
eps_values = np.arange(0.01, 0.
|
| 186 |
else: # 'euclidean' or other
|
| 187 |
if X.shape[0] > 1:
|
| 188 |
# For Euclidean, eps depends on the scale of the data.
|
|
@@ -201,6 +212,7 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 201 |
best_score = -1.001
|
| 202 |
best_labels = None
|
| 203 |
best_eps = None
|
|
|
|
| 204 |
|
| 205 |
# This loop now lives in `clustering_author` to have access to the full DataFrame for evaluation.
|
| 206 |
for eps in eps_values:
|
|
@@ -211,6 +223,8 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 211 |
current_labels = db.fit_predict(X)
|
| 212 |
|
| 213 |
# --- Evaluation Step 1: Silhouette Score ---
|
|
|
|
|
|
|
| 214 |
score = _calculate_silhouette_score(X, current_labels, metric)
|
| 215 |
if score is not None:
|
| 216 |
print(f" - Silhouette Score: {score:.4f}")
|
|
@@ -236,9 +250,9 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 236 |
|
| 237 |
# --- Evaluation Step 3: Distance Preservation on Test Corpus (if provided) ---
|
| 238 |
if test_corpus_df is not None:
|
|
|
|
| 239 |
# We need the centroids from the current clustering of the background corpus
|
| 240 |
centroids = _compute_cluster_centroids(temp_df[temp_df['cluster_label'] != -1], embedding_clm, 'cluster_label')
|
| 241 |
-
|
| 242 |
test_correlation = evaluate_test_set_distance_preservation(test_corpus_df, centroids, embedding_clm)
|
| 243 |
if test_correlation is not None:
|
| 244 |
print(f" - Test Set Distance Preservation (Pearson r): {test_correlation:.4f}")
|
|
@@ -246,7 +260,14 @@ def clustering_author(background_corpus_df: pd.DataFrame,
|
|
| 246 |
print(" - Test Set Distance Preservation (Pearson r): N/A (not enough test data or clusters)")
|
| 247 |
|
| 248 |
print('Eps {}, #clusters {}, solihouette {}, Pearson {}'.format(eps, len(set(current_labels) - {-1}), score, test_correlation))
|
|
|
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
if best_labels is not None:
|
| 251 |
num_found_clusters = len(set(best_labels) - {-1})
|
| 252 |
print(f"\n--- Best Clustering Result ---")
|
|
@@ -450,6 +471,8 @@ def evaluate_test_set_distance_preservation(
|
|
| 450 |
|
| 451 |
# 2. Project test embeddings into the centroid space and get new distances
|
| 452 |
projected_embeddings_matrix = _project_to_centroid_space(test_embeddings_matrix, centroids_map)
|
|
|
|
|
|
|
| 453 |
if projected_embeddings_matrix.ndim != 2 or projected_embeddings_matrix.shape[1] < 2:
|
| 454 |
return None # Projection failed or resulted in a space with <2 dimensions
|
| 455 |
|
|
|
|
| 7 |
from sklearn.metrics.pairwise import cosine_distances, cosine_similarity
|
| 8 |
from scipy.stats import pearsonr, ConstantInputWarning
|
| 9 |
from typing import List, Dict, Any
|
| 10 |
+
from tabulate import tabulate
|
| 11 |
|
| 12 |
import json
|
| 13 |
|
|
|
|
| 100 |
|
| 101 |
embeddings_list = background_corpus_df[embedding_clm].tolist()
|
| 102 |
|
| 103 |
+
|
| 104 |
X_list = []
|
| 105 |
original_indices = [] # To map results back to the original DataFrame's indices
|
| 106 |
|
|
|
|
| 150 |
print(f"Applying PCA to reduce dimensions from {X.shape[1]} to {pca_dimensions}...")
|
| 151 |
pca = PCA(n_components=pca_dimensions, random_state=42)
|
| 152 |
X = pca.fit_transform(X)
|
| 153 |
+
|
| 154 |
+
# Update the background_corpus_df with the transformed embeddings
|
| 155 |
+
# This ensures subsequent centroid calculations use the reduced-dimension space.
|
| 156 |
+
background_corpus_df[embedding_clm] = list(X)
|
| 157 |
|
| 158 |
# If a test set is provided, transform its embeddings using the same PCA model
|
| 159 |
if test_corpus_df is not None:
|
| 160 |
test_embeddings_matrix = _safe_embeddings_to_matrix(test_corpus_df[embedding_clm])
|
| 161 |
+
if test_embeddings_matrix.ndim == 2 and test_embeddings_matrix.shape[0] > 0 and test_embeddings_matrix.shape[1] == pca.n_features_in_:
|
| 162 |
print(f"Transforming test set embeddings with the same PCA model...")
|
| 163 |
transformed_test_embeddings = pca.transform(test_embeddings_matrix)
|
| 164 |
# Update the test DataFrame's embedding column with the reduced embeddings
|
| 165 |
+
#test_corpus_df.loc[:, embedding_clm] = list(transformed_test_embeddings)
|
| 166 |
test_corpus_df[embedding_clm] = list(transformed_test_embeddings)
|
| 167 |
else:
|
| 168 |
+
print(f"Warning: Could not apply PCA to test set. Test shape: {test_embeddings_matrix.shape}, PCA features: {pca.n_features_in_}")
|
| 169 |
+
|
| 170 |
|
| 171 |
# For cosine metric, normalize embeddings to unit length.
|
| 172 |
# This is standard practice as cosine similarity is equivalent to Euclidean
|
|
|
|
| 175 |
if metric == 'cosine':
|
| 176 |
from sklearn.preprocessing import normalize
|
| 177 |
print("Normalizing embeddings for cosine distance...")
|
| 178 |
+
X_normalized = normalize(X, norm='l2', axis=1)
|
| 179 |
+
# Update the background_corpus_df with the normalized embeddings
|
| 180 |
+
background_corpus_df[embedding_clm] = list(X_normalized)
|
| 181 |
+
X = X_normalized # Use the normalized data for clustering
|
| 182 |
|
| 183 |
# Also normalize the test corpus embeddings if they exist
|
| 184 |
if test_corpus_df is not None:
|
|
|
|
| 189 |
test_corpus_df[embedding_clm] = list(normalized_test_embeddings)
|
| 190 |
else:
|
| 191 |
print("Warning: Could not normalize test set embeddings due to invalid data.")
|
| 192 |
+
|
| 193 |
if eps_values is None:
|
| 194 |
if metric == 'cosine':
|
| 195 |
#eps_values = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
|
| 196 |
+
eps_values = np.arange(0.01, 0.2, 0.01)
|
| 197 |
else: # 'euclidean' or other
|
| 198 |
if X.shape[0] > 1:
|
| 199 |
# For Euclidean, eps depends on the scale of the data.
|
|
|
|
| 212 |
best_score = -1.001
|
| 213 |
best_labels = None
|
| 214 |
best_eps = None
|
| 215 |
+
results_for_table = []
|
| 216 |
|
| 217 |
# This loop now lives in `clustering_author` to have access to the full DataFrame for evaluation.
|
| 218 |
for eps in eps_values:
|
|
|
|
| 223 |
current_labels = db.fit_predict(X)
|
| 224 |
|
| 225 |
# --- Evaluation Step 1: Silhouette Score ---
|
| 226 |
+
num_clusters = len(set(current_labels) - {-1})
|
| 227 |
+
num_outliers = np.sum(current_labels == -1)
|
| 228 |
score = _calculate_silhouette_score(X, current_labels, metric)
|
| 229 |
if score is not None:
|
| 230 |
print(f" - Silhouette Score: {score:.4f}")
|
|
|
|
| 250 |
|
| 251 |
# --- Evaluation Step 3: Distance Preservation on Test Corpus (if provided) ---
|
| 252 |
if test_corpus_df is not None:
|
| 253 |
+
test_correlation = None
|
| 254 |
# We need the centroids from the current clustering of the background corpus
|
| 255 |
centroids = _compute_cluster_centroids(temp_df[temp_df['cluster_label'] != -1], embedding_clm, 'cluster_label')
|
|
|
|
| 256 |
test_correlation = evaluate_test_set_distance_preservation(test_corpus_df, centroids, embedding_clm)
|
| 257 |
if test_correlation is not None:
|
| 258 |
print(f" - Test Set Distance Preservation (Pearson r): {test_correlation:.4f}")
|
|
|
|
| 260 |
print(" - Test Set Distance Preservation (Pearson r): N/A (not enough test data or clusters)")
|
| 261 |
|
| 262 |
print('Eps {}, #clusters {}, solihouette {}, Pearson {}'.format(eps, len(set(current_labels) - {-1}), score, test_correlation))
|
| 263 |
+
results_for_table.append([f"{eps:.3f}", f"{score:.4f}" if score is not None else "N/A", f"{test_correlation:.4f}" if test_correlation is not None else "N/A", num_clusters, num_outliers])
|
| 264 |
|
| 265 |
+
# --- Print Final Summary Table ---
|
| 266 |
+
print("\n\n--- Clustering Run Summary ---")
|
| 267 |
+
headers = ["Epsilon (eps)", "Silhouette Score", "Test Dist. Preserv.", "# Clusters", "# Outliers"]
|
| 268 |
+
print(tabulate(results_for_table, headers=headers, tablefmt="grid"))
|
| 269 |
+
print("----------------------------\n")
|
| 270 |
+
|
| 271 |
if best_labels is not None:
|
| 272 |
num_found_clusters = len(set(best_labels) - {-1})
|
| 273 |
print(f"\n--- Best Clustering Result ---")
|
|
|
|
| 471 |
|
| 472 |
# 2. Project test embeddings into the centroid space and get new distances
|
| 473 |
projected_embeddings_matrix = _project_to_centroid_space(test_embeddings_matrix, centroids_map)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
if projected_embeddings_matrix.ndim != 2 or projected_embeddings_matrix.shape[1] < 2:
|
| 477 |
return None # Projection failed or resulted in a space with <2 dimensions
|
| 478 |
|
utils/ui.py
CHANGED
|
@@ -91,7 +91,6 @@ def update_task_display(mode, iid, instances, background_df, mystery_file, cand1
|
|
| 91 |
if mode == "Predefined HRS Task":
|
| 92 |
iid = int(iid.replace('Task ', ''))
|
| 93 |
data = instances[iid]
|
| 94 |
-
predicted_author = data['latent_rank'][0]
|
| 95 |
ground_truth_author = 100#data['gt_idx']
|
| 96 |
mystery_txt = data['Q_fullText']
|
| 97 |
c1_txt = data['a0_fullText']
|
|
@@ -100,7 +99,7 @@ def update_task_display(mode, iid, instances, background_df, mystery_file, cand1
|
|
| 100 |
candidate_texts = [c1_txt, c2_txt, c3_txt]
|
| 101 |
|
| 102 |
#create a dataframe of the task authors
|
| 103 |
-
task_authors_df = instance_to_df(instances[iid], predicted_author=
|
| 104 |
print(f"\n\n\n ----> Loaded task {iid} with {len(task_authors_df)} authors\n\n\n")
|
| 105 |
else:
|
| 106 |
header_html = "<h3>Custom Uploaded Task</h3>"
|
|
@@ -136,10 +135,6 @@ def update_task_display(mode, iid, instances, background_df, mystery_file, cand1
|
|
| 136 |
task_authors_df['g2v_vector'] = task_authors_g2v
|
| 137 |
print(f"Gram2Vec feature generation complete")
|
| 138 |
|
| 139 |
-
if mode != "Predefined HRS Task":
|
| 140 |
-
# Computing predicted author by checking pairwise cosine similarity over luar embeddings
|
| 141 |
-
col_name = f'{model_name.split("/")[-1]}_style_embedding'
|
| 142 |
-
predicted_author = compute_predicted_author(task_authors_df, col_name)
|
| 143 |
|
| 144 |
#generating html for the task
|
| 145 |
header_html, mystery_html, candidate_htmls = task_HTML(mystery_txt, candidate_texts, predicted_author, ground_truth_author)
|
|
|
|
| 91 |
if mode == "Predefined HRS Task":
|
| 92 |
iid = int(iid.replace('Task ', ''))
|
| 93 |
data = instances[iid]
|
|
|
|
| 94 |
ground_truth_author = 100#data['gt_idx']
|
| 95 |
mystery_txt = data['Q_fullText']
|
| 96 |
c1_txt = data['a0_fullText']
|
|
|
|
| 99 |
candidate_texts = [c1_txt, c2_txt, c3_txt]
|
| 100 |
|
| 101 |
#create a dataframe of the task authors
|
| 102 |
+
task_authors_df = instance_to_df(instances[iid], predicted_author=None, ground_truth_author=ground_truth_author)
|
| 103 |
print(f"\n\n\n ----> Loaded task {iid} with {len(task_authors_df)} authors\n\n\n")
|
| 104 |
else:
|
| 105 |
header_html = "<h3>Custom Uploaded Task</h3>"
|
|
|
|
| 135 |
task_authors_df['g2v_vector'] = task_authors_g2v
|
| 136 |
print(f"Gram2Vec feature generation complete")
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
#generating html for the task
|
| 140 |
header_html, mystery_html, candidate_htmls = task_HTML(mystery_txt, candidate_texts, predicted_author, ground_truth_author)
|
utils/visualizations.py
CHANGED
|
@@ -389,9 +389,9 @@ def visualize_clusters_plotly(iid, cfg, instances, model_radio, custom_model_inp
|
|
| 389 |
print(background_authors_embeddings_df.columns)
|
| 390 |
print("Generating cluster visualization")
|
| 391 |
iid = int(iid)
|
| 392 |
-
interp = load_interp_space(cfg)
|
| 393 |
# dim2lat = interp['dimension_to_latent']
|
| 394 |
-
style_names = interp['dimension_to_style']
|
| 395 |
# bg_emb = np.array(interp['author_embedding'])
|
| 396 |
# print(f"bg_emb shape: {bg_emb.shape}")
|
| 397 |
#replace with cached embedddings
|
|
@@ -544,7 +544,7 @@ def visualize_clusters_plotly(iid, cfg, instances, model_radio, custom_model_inp
|
|
| 544 |
return (
|
| 545 |
fig,
|
| 546 |
# update(choices=display_clusters, value=display_clusters[cluster_label_query]),
|
| 547 |
-
|
| 548 |
bg_proj, # Return background points
|
| 549 |
bg_ids, # Return background labels
|
| 550 |
background_authors_embeddings_df, # Return the DataFrame for zoom handling
|
|
|
|
| 389 |
print(background_authors_embeddings_df.columns)
|
| 390 |
print("Generating cluster visualization")
|
| 391 |
iid = int(iid)
|
| 392 |
+
#interp = load_interp_space(cfg)
|
| 393 |
# dim2lat = interp['dimension_to_latent']
|
| 394 |
+
#style_names = interp['dimension_to_style']
|
| 395 |
# bg_emb = np.array(interp['author_embedding'])
|
| 396 |
# print(f"bg_emb shape: {bg_emb.shape}")
|
| 397 |
#replace with cached embedddings
|
|
|
|
| 544 |
return (
|
| 545 |
fig,
|
| 546 |
# update(choices=display_clusters, value=display_clusters[cluster_label_query]),
|
| 547 |
+
None,
|
| 548 |
bg_proj, # Return background points
|
| 549 |
bg_ids, # Return background labels
|
| 550 |
background_authors_embeddings_df, # Return the DataFrame for zoom handling
|