import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from transformers.pipelines.audio_utils import ffmpeg_read import gradio as gr import librosa MODEL_NAME = "EwoutLagendijk/whisper-small-indonesian" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" # Load model and processor model_name = "EwoutLagendijk/whisper-small-indonesian" model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name) processor = AutoProcessor.from_pretrained(model_name) # Update the generation config for transcription model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="id", task="transcribe") def transcribe_speech(filepath): # Load the audio audio, sampling_rate = librosa.load(filepath, sr=16000) # Define chunk size (e.g., 30 seconds) chunk_duration = 30 # in seconds chunk_samples = chunk_duration * sampling_rate # Process audio in chunks transcription = [] for i in range(0, len(audio), chunk_samples): chunk = audio[i:i + chunk_samples] # Convert the chunk into input features inputs = processor(audio=chunk, sampling_rate=16000, return_tensors="pt").input_features # Generate transcription for the chunk generated_ids = model.generate( inputs, max_new_tokens=444, # Max allowed by Whisper forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe"), return_timestamps = True ) # Decode and append the transcription chunk_transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] transcription.append(chunk_transcription) # Combine all chunk transcriptions into a single string return " ".join(transcription) demo = gr.Blocks() mic_transcribe = gr.Interface( fn=transcribe_speech, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.components.Textbox(), ) file_transcribe = gr.Interface( fn=transcribe_speech, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.components.Textbox(), ) with demo: gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"]) demo.launch(debug=True)