MotionLLM / lit_llama /quantization.py
EvanTHU
update
445d3d1
raw
history blame
11.1 kB
import os
from contextlib import contextmanager
import warnings
import math
import torch
# configuration for bitsandbytes before import
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
warnings.filterwarnings(
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization"
)
warnings.filterwarnings(
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization"
)
warnings.filterwarnings(
"ignore",
message="The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers and GPU quantization are unavailable."
)
try:
import bitsandbytes as bnb # noqa: E402
except:
bnb = None
if bnb is not None:
class Linear8bitLt(bnb.nn.Linear8bitLt):
"""Wraps `bnb.nn.Linear8bitLt` and enables instantiation directly on the device and
re-quantizaton when loading the state dict.
This should only be used for inference. For training, use `bnb.nn.Linear8bitLt` directly.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, has_fp16_weights=False, threshold=6.0)
# We quantize the initial weight here so we don't end up filling the device
# memory with float32 weights which could lead to OOM.
self._quantize_weight(self.weight.data)
def _load_from_state_dict(self, local_state_dict, *args, **kwargs):
# There is only one key that ends with `*.weight`, the other one is the bias
weight_key = next((name for name in local_state_dict.keys() if name.endswith("weight")), None)
if weight_key is None:
return
# Load the weight from the state dict and re-quantize it
weight = local_state_dict.pop(weight_key)
self._quantize_weight(weight)
# If there is a bias, let nn.Module load it
if local_state_dict:
super()._load_from_state_dict(local_state_dict, *args, **kwargs)
def _quantize_weight(self, weight: torch.Tensor) -> None:
# This code is taken and adapted from `bnb.nn.Int8Params.cuda()`
B = weight.contiguous().half().cuda()
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.weight.data = CB
setattr(self.weight, "CB", CB)
setattr(self.weight, "SCB", SCB)
# for correctness but with terrible perf
class ColBlockQuantizedLinear(torch.nn.Module):
def __init__(self, in_features, out_features, bias: bool, *, bits, tile_cols):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.tile_cols = tile_cols if tile_cols != -1 else self.in_features
self.bits = bits
self.entries_per_byte = 8 // bits
assert self.entries_per_byte > 0 and self.entries_per_byte * self.bits == 8
assert in_features % self.entries_per_byte == 0
self.register_buffer("quant_weight", torch.empty((self.out_features, self.in_features // self.entries_per_byte), dtype=torch.uint8))
self.register_buffer("scales", torch.empty((self.out_features, (self.in_features + self.tile_cols - 1) // self.tile_cols)))
self.register_buffer("zeros", torch.empty_like(self.scales))
assert isinstance(bias, bool)
if bias:
self.register_buffer("bias", torch.empty((self.out_features,)))
else:
self.register_buffer("bias", None)
def pack_weight(self, weight):
weight = weight.to(device=self.quant_weight.device, copy=True)
for j in range(self.scales.size(1)):
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] /= self.scales[: , j: j+1]
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] += self.zeros[: , j: j+1]
weight = weight.clamp_(min=0, max=2 ** self.bits - 1).to(dtype=torch.uint8)
self.quant_weight.zero_()
for nr in range(self.entries_per_byte):
self.quant_weight += weight[:, nr::self.entries_per_byte] << (nr * self.bits)
def get_weight(self, dtype=torch.float):
weight = torch.empty((self.out_features, self.in_features), device=self.quant_weight.device, dtype=dtype)
mask = (1<<self.bits) - 1
for nr in range(self.entries_per_byte):
weight[:, nr::self.entries_per_byte] = ((self.quant_weight >> (nr * self.bits)) & mask).float()
self.quant_weight.to(dtype)
for j in range(self.scales.size(1)):
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] -= self.zeros[: , j: j+1]
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] *= self.scales[: , j: j+1]
return weight
def forward(self, inp):
weight = self.get_weight(dtype=inp.dtype)
return torch.nn.functional.linear(inp, weight, self.bias)
class GPTQQuantizer:
# The algorithm and code has been taken from https://github.com/IST-DASLab/gptq/
# E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
# portions copyright by the authors licensed under the Apache License 2.0
# All errors are our own.
def __init__(self, linear_module, *, bits, perchannel=True, sym=False, blocksize=128, percdamp=.01, groupsize=-1, actorder=False):
assert isinstance(linear_module, torch.nn.Linear)
self.linear_module = linear_module
self.dev = self.linear_module.weight.device
self.rows = linear_module.weight.shape[0]
self.columns = linear_module.weight.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
self.bits = bits
self.maxq = 2 ** bits - 1
self.perchannel = perchannel
self.sym = sym
self.blocksize = blocksize
self.percdamp = percdamp
self.groupsize = groupsize
self.actorder = actorder
self.tile_cols = self.columns if groupsize == -1 else groupsize
self.scales = torch.zeros((self.rows, (self.columns + self.tile_cols - 1) // self.tile_cols), dtype=self.linear_module.weight.dtype, device = self.dev)
self.zeros = torch.zeros_like(self.scales)
assert not (self.actorder and self.groupsize != -1), "The permutation trick does not work for grouped quantization"
@staticmethod
def quantize_weight(x, scale, zero, maxq):
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
x_rec = scale * (q - zero)
return x_rec
def find_params_weight(self, x):
dev = x.device
shape = x.shape
if self.perchannel:
x = x.flatten(1)
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
scale = (xmax - xmin) / self.maxq
if self.sym:
zero = torch.full_like(scale, (self.maxq + 1) / 2)
else:
zero = torch.round(-xmin / scale)
if not self.perchannel:
tmp = shape[0]
scale = scale.repeat(tmp)
zero = zero.repeat(tmp)
shape = [-1] + [1] * (len(shape) - 1)
scale = scale.reshape(shape)
zero = zero.reshape(shape)
return scale, zero
def collect_input_stats(self, _1, inp, _2):
inp = inp[0].detach()
self.last_inp = inp
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
# inp = inp.float()
inp = math.sqrt(2 / self.nsamples) * inp.float()
# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())
def quantize(self):
W = self.linear_module.weight.detach().to(dtype=torch.float, copy=True)
scale, zero = self.find_params_weight(W)
self.scales[:] = scale
self.zeros[:] = zero
H = self.H
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
if self.actorder:
perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm]
H = H[perm][:, perm]
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
damp = self.percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
for i1 in range(0, self.columns, self.blocksize):
i2 = min(i1 + self.blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if self.groupsize != -1:
if (i1 + i) % self.groupsize == 0:
scale, zero = self.find_params_weight(W[:, (i1 + i):(i1 + i + self.groupsize)])
self.scales[:, (i1 + i) // self.groupsize] = scale
self.zeros[:, (i1 + i) // self.groupsize] = zeros
q = self.quantize_weight(
w.unsqueeze(1), scale, zero, self.maxq
)
q = q.squeeze(1)
assert q.dim() == 1
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d ** 2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if self.actorder:
invperm = torch.argsort(perm)
Q = Q[:, invperm]
weight = Q.reshape(self.linear_module.weight.shape).to(self.linear_module.weight.data.dtype)
error = torch.sum(Losses).item()
q_module = ColBlockQuantizedLinear(self.linear_module.in_features, self.linear_module.out_features, self.linear_module.bias is not None,
bits=self.bits, tile_cols=self.groupsize).to(self.dev)
q_module.scales = self.scales
q_module.zeros = self.zeros
q_module.pack_weight(weight)
q_module.bias = self.linear_module.bias
return q_module, error