import spaces import gradio as gr import sys import os import torch import numpy as np from os.path import join as pjoin import utils.paramUtil as paramUtil from utils.plot_script import * from utils.utils import * from utils.motion_process import recover_from_ric from accelerate.utils import set_seed from models.gaussian_diffusion import DiffusePipeline from options.generate_options import GenerateOptions from utils.model_load import load_model_weights from motion_loader import get_dataset_loader from models import build_models import yaml import time from box import Box import hashlib from huggingface_hub import hf_hub_download ckptdir = './checkpoints/t2m/release' os.makedirs(ckptdir, exist_ok=True) mean_path = hf_hub_download( repo_id="EvanTHU/MotionCLR", filename="meta/mean.npy", local_dir=ckptdir, local_dir_use_symlinks=False ) std_path = hf_hub_download( repo_id="EvanTHU/MotionCLR", filename="meta/std.npy", local_dir=ckptdir, local_dir_use_symlinks=False ) model_path = hf_hub_download( repo_id="EvanTHU/MotionCLR", filename="model/latest.tar", local_dir=ckptdir, local_dir_use_symlinks=False ) opt_path = hf_hub_download( repo_id="EvanTHU/MotionCLR", filename="opt.txt", local_dir=ckptdir, local_dir_use_symlinks=False ) os.makedirs("tmp", exist_ok=True) os.environ['GRADIO_TEMP_DIR'] = './tmp' def generate_md5(input_string): # Encode the string and compute the MD5 hash md5_hash = hashlib.md5(input_string.encode()) # Return the hexadecimal representation of the hash return md5_hash.hexdigest() def set_all_use_to_false(data): for key, value in data.items(): if isinstance(value, Box): set_all_use_to_false(value) elif key == 'use': data[key] = False return data def yaml_to_box(yaml_file): with open(yaml_file, 'r') as file: yaml_data = yaml.safe_load(file) return Box(yaml_data) HEAD = """
Content Reference
""" global edit_config edit_config = set_all_use_to_false(edit_config) return video_dis, video_dis, video_dis, video_dis, style_dis, video_dis, gr.update(visible=True) def reweighting(text, idx, weight, opt, pipeline): global edit_config edit_config.reweighting_attn.use = True edit_config.reweighting_attn.idx = idx edit_config.reweighting_attn.reweighting_attn_weight = weight gr.Info("Loading Configurations...", duration = 3) model = build_models(opt, edit_config=edit_config) ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) pipeline = DiffusePipeline( opt = opt, model = model, diffuser_name = opt.diffuser_name, device=opt.device, num_inference_steps=opt.num_inference_steps, torch_dtype=torch.float16, ) print(edit_config) width = 500 height = 500 texts = [text, text] motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)] save_dir = './tmp/gen/' filenames = [generate_md5(str(time.time())) + ".mp4", generate_md5(str(time.time())) + ".mp4"] save_paths = [pjoin(save_dir, str(filenames[0])), pjoin(save_dir, str(filenames[1]))] os.makedirs(save_dir, exist_ok=True) start_time = time.perf_counter() gr.Info("Generating motion...", duration = 3) pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) end_time = time.perf_counter() exc = end_time - start_time gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) start_time = time.perf_counter() mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) std = np.load(pjoin(opt.meta_dir, 'std.npy')) samples = [] root_list = [] for i, motion in enumerate(pred_motions): motion = motion.cpu().numpy() * std + mean # 1. recover 3d joints representation by ik motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) # 2. put on Floor (Y axis) floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] motion[:, :, 1] -= floor_height motion = motion.numpy() # 3. remove jitter motion = motion_temporal_filter(motion, sigma=1) samples.append(motion) i = 1 title = texts[i] motion = samples[i] kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain plot_3d_motion(save_paths[1], kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) gr.Info("Rendered motion...", duration = 3) end_time = time.perf_counter() exc = end_time - start_time gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) video_dis = f'' edit_config = set_all_use_to_false(edit_config) return video_dis def generate_example_based_motion(text, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion, opt, pipeline): global edit_config edit_config.example_based.use = True edit_config.example_based.chunk_size = chunk_size edit_config.example_based.example_based_steps_end = example_based_steps_end edit_config.example_based.temp_seed = temp_seed edit_config.example_based.temp_seed_bar = temp_seed_bar gr.Info("Loading Configurations...", duration = 3) model = build_models(opt, edit_config=edit_config) ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) pipeline = DiffusePipeline( opt = opt, model = model, diffuser_name = opt.diffuser_name, device=opt.device, num_inference_steps=opt.num_inference_steps, torch_dtype=torch.float16, ) width = 500 height = 500 texts = [text for _ in range(num_motion)] motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)] save_dir = './tmp/gen/' filenames = [generate_md5(str(time.time())) + ".mp4" for _ in range(num_motion)] save_paths = [pjoin(save_dir, str(filenames[i])) for i in range(num_motion)] os.makedirs(save_dir, exist_ok=True) start_time = time.perf_counter() gr.Info("Generating motion...", duration = 3) pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) end_time = time.perf_counter() exc = end_time - start_time gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) start_time = time.perf_counter() mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) std = np.load(pjoin(opt.meta_dir, 'std.npy')) samples = [] root_list = [] progress=gr.Progress() progress(0, desc="Starting...") for i, motion in enumerate(pred_motions): motion = motion.cpu().numpy() * std + mean # 1. recover 3d joints representation by ik motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) # 2. put on Floor (Y axis) floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] motion[:, :, 1] -= floor_height motion = motion.numpy() # 3. remove jitter motion = motion_temporal_filter(motion, sigma=1) samples.append(motion) video_dis = [] i = 0 for title in progress.tqdm(texts): print(save_paths[i]) title = texts[i] motion = samples[i] kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain plot_3d_motion(save_paths[i], kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) video_html = f''' ''' video_dis.append(video_html) i += 1 for _ in range(24 - num_motion): video_dis.append(None) gr.Info("Rendered motion...", duration = 3) end_time = time.perf_counter() exc = end_time - start_time gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) edit_config = set_all_use_to_false(edit_config) return video_dis def transfer_style(text, style_text, style_transfer_steps_end, opt, pipeline): global edit_config edit_config.style_tranfer.use = True edit_config.style_tranfer.style_transfer_steps_end = style_transfer_steps_end gr.Info("Loading Configurations...", duration = 3) model = build_models(opt, edit_config=edit_config) ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) pipeline = DiffusePipeline( opt = opt, model = model, diffuser_name = opt.diffuser_name, device=opt.device, num_inference_steps=opt.num_inference_steps, torch_dtype=torch.float16, ) print(edit_config) width = 500 height = 500 texts = [style_text, text, text] motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)] save_dir = './tmp/gen/' filenames = [generate_md5(str(time.time())) + ".mp4", generate_md5(str(time.time())) + ".mp4", generate_md5(str(time.time())) + ".mp4"] save_paths = [pjoin(save_dir, str(filenames[0])), pjoin(save_dir, str(filenames[1])), pjoin(save_dir, str(filenames[2]))] os.makedirs(save_dir, exist_ok=True) start_time = time.perf_counter() gr.Info("Generating motion...", duration = 3) pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) end_time = time.perf_counter() exc = end_time - start_time gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) start_time = time.perf_counter() mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) std = np.load(pjoin(opt.meta_dir, 'std.npy')) samples = [] root_list = [] for i, motion in enumerate(pred_motions): motion = motion.cpu().numpy() * std + mean # 1. recover 3d joints representation by ik motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) # 2. put on Floor (Y axis) floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] motion[:, :, 1] -= floor_height motion = motion.numpy() # 3. remove jitter motion = motion_temporal_filter(motion, sigma=1) samples.append(motion) for i,title in enumerate(texts): title = texts[i] motion = samples[i] kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain plot_3d_motion(save_paths[i], kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) gr.Info("Rendered motion...", duration = 3) end_time = time.perf_counter() exc = end_time - start_time gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) video_dis0 = f"""Style Reference
""" video_dis1 = f"""Content Reference
""" video_dis2 = f"""Transfered Result
""" edit_config = set_all_use_to_false(edit_config) return video_dis0, video_dis2 @spaces.GPU def main(): parser = GenerateOptions() opt = parser.parse_app() set_seed(opt.seed) device_id = opt.gpu_id device = torch.device('cuda:%d' % device_id if torch.cuda.is_available() else 'cpu') opt.device = device # load model model = build_models(opt, edit_config=edit_config) ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) pipeline = DiffusePipeline( opt = opt, model = model, diffuser_name = opt.diffuser_name, device=device, num_inference_steps=opt.num_inference_steps, torch_dtype=torch.float16, ) with gr.Blocks() as demo: gr.Markdown(HEAD) with gr.Row(): with gr.Column(scale=7): text_input = gr.Textbox(label="Input the text prompt to generate motion...") with gr.Column(scale=3): sequence_length = gr.Slider(minimum=1, maximum=9.6, step=0.1, label="Motion length", value=8) with gr.Row(): generate_button = gr.Button("Generate motion") with gr.Row(): video_display = gr.HTML(label="生成的视频", visible=True) tabs = gr.Tabs(visible=True) with tabs: with gr.Tab("Motion (de-)emphasizing"): with gr.Row(): int_input = gr.Number(label="Editing word index", minimum=0, maximum=70) weight_input = gr.Slider(minimum=-1, maximum=1, step=0.01, label="Input weight for (de-)emphasizing [-1, 1]", value=0) trim_button = gr.Button("Edit reweighting") with gr.Row(): original_video1 = gr.HTML(label="before editing", visible=False) edited_video = gr.HTML(label="after editing") trim_button.click( fn=lambda x, int_input, weight_input : reweighting(x, int_input, weight_input, opt, pipeline), inputs=[text_input, int_input, weight_input], outputs=edited_video, ) with gr.Tab("Example-based motion genration"): with gr.Row(): with gr.Column(scale=4): chunk_size = gr.Number(minimum=10, maximum=20, step=10,label="Chunk size (#frames)", value=20) example_based_steps_end = gr.Number(minimum=0, maximum=9,label="Ending step of manipulation", value=6) with gr.Column(scale=3): temp_seed = gr.Number(label="Seed for random", value=200, minimum=0) temp_seed_bar = gr.Slider(minimum=0, maximum=100, step=1, label="Seed for random bar", value=15) with gr.Column(scale=3): num_motion = gr.Radio(choices=[4, 8, 12, 16, 24], value=8, label="Select number of motions") gen_button = gr.Button("Generate example-based motion") example_video_display = [] for _ in range(6): with gr.Row(): for _ in range(4): video = gr.HTML(label="Example-based motion", visible=True) example_video_display.append(video) gen_button.click( fn=lambda text, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion: generate_example_based_motion(text, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion, opt, pipeline), inputs=[text_input, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion], outputs=example_video_display ) with gr.Tab("Style transfer"): with gr.Row(): style_text = gr.Textbox(label="Reference prompt (e.g. 'a man walks.')", value="a man walks.") style_transfer_steps_end = gr.Number(label="The end step of diffusion (0~9)", minimum=0, maximum=9, value=5) style_transfer_button = gr.Button("Transfer style") with gr.Row(): style_reference = gr.HTML(label="style reference") original_video4 = gr.HTML(label="before style transfer", visible=False) styled_video = gr.HTML(label="after style transfer") style_transfer_button.click( fn=lambda text, style_text, style_transfer_steps_end: transfer_style(text, style_text, style_transfer_steps_end, opt, pipeline), inputs=[text_input, style_text, style_transfer_steps_end], outputs=[style_reference, styled_video], ) def update_motion_length(sequence_length): opt.motion_length = sequence_length def on_generate(text, length, pipeline): update_motion_length(length) return generate_video_from_text(text, opt, pipeline) generate_button.click( fn=lambda text, length: on_generate(text, length, pipeline), inputs=[text_input, sequence_length], outputs=[ video_display, original_video1, original_video4, tabs, ], show_progress=True ) generate_button.click( fn=lambda: [gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)], inputs=None, outputs=[video_display, original_video1, original_video4] ) demo.launch() if __name__ == '__main__': main()