import gradio as gr import json from difflib import Differ import ffmpeg import os from pathlib import Path import time from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import MarianMTModel, MarianTokenizer import pandas as pd import re import time import os from fuzzywuzzy import fuzz from fastT5 import export_and_get_onnx_model import torch from transformers import pipeline MODEL = "Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish" marian_nmt_model = "Helsinki-NLP/opus-mt-tc-big-fi-en" tokenizer_marian = MarianTokenizer.from_pretrained(marian_nmt_model) model = MarianMTModel.from_pretrained(marian_nmt_model) cuda = torch.device( 'cuda:0') if torch.cuda.is_available() else torch.device('cpu') sr_pipeline_device = 0 if torch.cuda.is_available() else -1 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") speech_recognizer = pipeline( task="automatic-speech-recognition", model=f'{MODEL}', tokenizer=f'{MODEL}', framework="pt", device=sr_pipeline_device, ) model_checkpoint = 'Finnish-NLP/t5-small-nl24-casing-punctuation-correction' tokenizer_t5 = AutoTokenizer.from_pretrained(model_checkpoint) model_t5 = export_and_get_onnx_model(model_checkpoint) #model_t5 = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, from_flax=False, torch_dtype=torch.float32).to(device) videos_out_path = Path("./videos_out") videos_out_path.mkdir(parents=True, exist_ok=True) samples_data = sorted(Path('examples').glob('*.json')) SAMPLES = [] for file in samples_data: with open(file) as f: sample = json.load(f) SAMPLES.append(sample) VIDEOS = list(map(lambda x: [x['video']], SAMPLES)) total_inferences_since_reboot = 0 total_cuts_since_reboot = 0 async def speech_to_text(video_file_path): """ Takes a video path to convert to audio, transcribe audio channel to text timestamps Using https://huggingface.co/tasks/automatic-speech-recognition pipeline """ global total_inferences_since_reboot if(video_file_path == None): raise ValueError("Error no video input") video_path = Path(video_file_path) try: # convert video to audio 16k using PIPE to audio_memory audio_memory, _ = ffmpeg.input(video_path).output( '-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True) except Exception as e: raise RuntimeError("Error converting video to audio") last_time = time.time() try: output = speech_recognizer( audio_memory, return_timestamps="word", chunk_length_s=10, stride_length_s=(4, 2)) transcription = output["text"].lower() timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]] for chunk in output['chunks']] input_ids = tokenizer_t5(transcription, return_tensors="pt").input_ids.to(device) outputs = model_t5.generate(input_ids, max_length=128) case_corrected_text = tokenizer_t5.decode(outputs[0], skip_special_tokens=True) translated = model.generate(**tokenizer_marian([case_corrected_text], return_tensors="pt", padding=True)) translated_plain = "".join([tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]) for timestamp in timestamps: total_inferences_since_reboot += 1 df = pd.DataFrame(timestamps, columns = ['word', 'start','stop']) df['start'] = df['start'].astype('float16') df['stop'] = df['stop'].astype('float16') print("\n\ntotal_inferences_since_reboot: ", total_inferences_since_reboot, "\n\n") return (transcription, transcription, timestamps,df, case_corrected_text, translated_plain) except Exception as e: raise RuntimeError("Error Running inference with local model", e) def create_srt(text_out_t5, df): df.columns = ['word', 'start', 'stop'] df_sentences = pd.DataFrame(columns=['sentence','start','stop','translated']) found_match_value = 0 found_match_word = "" t5_sentences = re.split('[.]|[?]|[!]', text_out_t5) t5_sentences = [sentence.replace('.','').replace('?','').replace('!','') for sentence in t5_sentences if sentence] for i, sentence in enumerate(t5_sentences): sentence = sentence.lower().split(" ") if i == 0: df_subset = df[df['stop'] <10] start = df.iloc[0]['start'] for j, word in enumerate(df_subset['word']): temp_value = fuzz.partial_ratio((word), sentence[-1]) if temp_value > found_match_value: found_match_value = temp_value found_match_word = word stop = df_subset[df_subset['word'] == found_match_word] translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True)) translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated] dict_to_add = { 'sentence': t5_sentences[i], 'start': start, 'stop': stop.iloc[0]['stop'], 'translated': translated_plain[0] } df_sentences = df_sentences.append(dict_to_add, ignore_index=True) new_start = df.iloc[stop.index.values[0]+1]['start'] new_stop = new_start + 10 else: found_match_value = 0 found_match_word = "" df_subset = df[(df['start'] >= new_start) & (df['stop'] <= new_stop)] start = df_subset.iloc[0]['start'] for j, word in enumerate(df_subset['word']): temp_value = fuzz.partial_ratio((word), sentence[-1]) if temp_value > found_match_value: found_match_value = temp_value found_match_word = word stop = df_subset[df_subset['word'] == found_match_word] translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True)) translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated] dict_to_add = { 'sentence': t5_sentences[i], 'start': start, 'stop': stop.iloc[0]['stop'], 'translated': translated_plain[0] } df_sentences = df_sentences.append(dict_to_add, ignore_index=True) try: new_start = df.iloc[stop.index.values[0]+1]['start'] new_stop = new_start + 10 except Exception as e: df_sentences = df_sentences.iloc[0:i+1] return df_sentences def create_srt_and_burn(video_in, srt_sentences): srt_sentences.columns = ['sentence', 'start', 'stop','translated'] srt_sentences.dropna(inplace=True) srt_sentences['start'] = srt_sentences['start'].astype('float') srt_sentences['stop'] = srt_sentences['stop'].astype('float') with open('testi.srt','w') as file: for i in range(len(srt_sentences)): file.write(str(i+1)) file.write('\n') start = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['start']))) if "." in str(srt_sentences.iloc[i]['start']): if len(str(srt_sentences.iloc[i]['start']).split('.')[1]) > 3: start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1][:3] else: start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1] file.write(start) stop = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['stop']))) if len(str(srt_sentences.iloc[i]['stop']).split('.')[1]) > 3: stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1][:3] else: stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1] file.write(' --> ') file.write(stop) file.write('\n') file.writelines(srt_sentences.iloc[i]['translated']) if int(i) != len(srt_sentences)-1: file.write('\n\n') try: file1 = open('./testi.srt', 'r') Lines = file1.readlines() count = 0 # Strips the newline character for line in Lines: count += 1 video_out = str(Path(video_in)).replace('.mp4', '_out.mp4') command = "ffmpeg -i {} -y -vf subtitles=./testi.srt {}".format(Path(video_in), Path(video_out)) os.system(command) return video_out except Exception as e: print(e) return video_out # ---- Gradio Layout ----- video_in = gr.Video(label="Video file", interactive=True) text_in = gr.Textbox(label="Transcription", lines=10, interactive=True) text_out_t5 = gr.Textbox(label="Transcription T5", lines=10, interactive=True) translation_out = gr.Textbox(label="Translation", lines=10, interactive=True) text_out_timestamps = gr.Textbox(label="Word level timestamps", lines=10, interactive=True) srt_sentences = gr.DataFrame(label="Srt lines", row_count=(0, "dynamic")) video_out = gr.Video(label="Video Out") diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True) examples = gr.components.Dataset( components=[video_in], samples=VIDEOS, type="index") demo = gr.Blocks(enable_queue=True, css=''' #cut_btn, #reset_btn { align-self:stretch; } #\\31 3 { max-width: 540px; } .output-markdown {max-width: 65ch !important;} ''') demo.encrypt = False with demo: transcription_var = gr.Variable() timestamps_var = gr.Variable() timestamps_df = gr.Dataframe(visible=False, row_count=(0, "dynamic")) with gr.Row(): with gr.Column(): gr.Markdown(''' # Create videos with English subtitles from videos spoken in Finnish This project is a quick proof of concept of a simple video editor where you can add English subtitles to Finnish videos. This space currently only works for short videos (Up to 128 tokens) but will be improved in next versions. Space uses our finetuned Finnish ASR models, Our pretrained + finetuned Finnish T5 model for casing+punctuation correction and Opus-MT models from Helsinki University for Finnish --> English translation. This space was inspired by https://huggingface.co/spaces/radames/edit-video-by-editing-text ''') with gr.Row(): examples.render() def load_example(id): video = SAMPLES[id]['video'] transcription = '' timestamps = SAMPLES[id]['timestamps'] return (video, transcription, transcription, timestamps) examples.click( load_example, inputs=[examples], outputs=[video_in, text_in, transcription_var, timestamps_var], queue=False) with gr.Row(): with gr.Column(): video_in.render() transcribe_btn = gr.Button("1. Press here to transcribe Audio") transcribe_btn.click(speech_to_text, [video_in], [ text_in, transcription_var, text_out_timestamps,timestamps_df, text_out_t5, translation_out]) with gr.Row(): gr.Markdown(''' ### Here you will get varying outputs from different parts of the processing ASR model output, T5 model output which corrects casing + hyphenation, sentence level translations and word level timestamps''') with gr.Row(): with gr.Column(): text_in.render() with gr.Column(): text_out_t5.render() with gr.Column(): translation_out.render() with gr.Column(): text_out_timestamps.render() with gr.Row(): with gr.Column(): translate_and_make_srt_btn = gr.Button("2. Press here to create rows for subtitles") translate_and_make_srt_btn.click(create_srt, [text_out_t5, timestamps_df], [ srt_sentences]) with gr.Row(): with gr.Column(): srt_sentences.render() with gr.Row(): with gr.Column(): translate_and_make_srt_btn = gr.Button("3. Press here to create subtitle file and insert translations to video") translate_and_make_srt_btn.click(create_srt_and_burn, [video_in, srt_sentences], [ video_out]) video_out.render() if __name__ == "__main__": demo.launch(debug=True)