import glob import gradio as gr import pandas as pd import faiss import clip import torch from datasets import load_dataset title = r"""

🔍 Search Similar Text/Image in the Dataset

""" description = r""" In this demo, we use [DiffusionDB](https://huggingface.co/datasets/poloclub/diffusiondb) instead of [LAION](https://laion.ai/blog/laion-400-open-dataset/) because LAION is currently not available.
This demo currently supports text search only.
The content will be updated to include image search once LAION is available. The code is based on [clip-retrieval](https://github.com/rom1504/clip-retrieval) and [autofaiss](https://github.com/criteo/autofaiss) """ # From local file # INDEX_DIR = "dataset/diffusiondb/text_index_folder" # IND = faiss.read_index(f"{INDEX_DIR}/text.index") # TEXT_LIST = pd.concat( # pd.read_parquet(file) for file in glob.glob(f"{INDEX_DIR}/metadata/*.parquet") # )['caption'].tolist() # From huggingface dataset from huggingface_hub import hf_hub_download, snapshot_download # Download index file hf_hub_download( repo_id="Eun02/diffusiondb_faiss_text_index", filename="text.index", repo_type="dataset", local_dir="./", ) # Download text file snapshot_download( repo_id="Eun02/diffusiondb_faiss_text_index", allow_patterns="*.parquet", repo_type="dataset", local_dir="./", ) # Load index and text data #root_path = "dataset/diffusiondb/text_index_folder" root_path = "." IND = faiss.read_index(f"{root_path}/text.index") TEXT_LIST = pd.concat( pd.read_parquet(file) for file in sorted(glob.glob(f"{root_path}/metadata/*.parquet")) )['caption'].tolist() # Load CLIP model device = "cpu" CLIP_MODEL, _ = clip.load("ViT-B/32", device=device) @torch.inference_mode def get_emb(text, device="cpu"): text_tokens = clip.tokenize([text], truncate=True) text_features = CLIP_MODEL.encode_text(text_tokens.to(device)) text_features /= text_features.norm(dim=-1, keepdim=True) text_embeddings = text_features.cpu().numpy().astype('float32') return text_embeddings @torch.inference_mode def search_text(dataset, top_k, show_score, query_text, device): if query_text is None or query_text == "": raise gr.Error("Query text is missing") text_embeddings = get_emb(query_text, device) scores, retrieved_texts = IND.search(text_embeddings, top_k) scores, retrieved_texts = scores[0], retrieved_texts[0] result_str = "" for score, ind in zip(scores, retrieved_texts): item_str = TEXT_LIST[ind].strip() if item_str == "": continue result_str += f"{item_str}" if show_score: result_str += f", {score:0.2f}" result_str += "\n" file_name = query_text.replace(" ", "_") if show_score: file_name += "_score" output_path = f"./{file_name}.txt" with open(output_path, "w") as f: f.writelines(result_str) return result_str, output_path with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): dataset = gr.Dropdown(label="dataset", choices=["DiffusionDB"], value="DiffusionDB") top_k = gr.Slider(label="top k", minimum=1, maximum=20, value=8) show_score = gr.Checkbox(label="Show score", value=True) query_text = gr.Textbox(label="query text") btn = gr.Button() with gr.Row(): result_text = gr.Textbox(label="retrieved text", interactive=False) result_file = gr.File(label="output file") btn.click( fn=search_text, inputs=[dataset, top_k, show_score, query_text], outputs=[result_text, result_file], ) demo.launch()