import pickle import numpy as np import gradio as gr import sklearn import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import ExtraTreesRegressor filename = 'Dataset_RCS_3.csv' names0 = ['JET', "Suelo",'SPT', 'WtoC', 'Presion', 'Velocidad','RCS'] dataset=pd.read_csv(filename, names=names0) y = dataset['RCS'] X = dataset.drop('RCS', axis=1) validation_size = 0.20 seed = 10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=validation_size, random_state=seed) modelodef=ExtraTreesRegressor( n_estimators=1000, max_depth=9, min_samples_leaf=1, random_state=seed) modelodef.fit(X_train, y_train) pickle.dump(modelodef, open("modelodef.pkl", "wb")) def RCS(JET, Suelo,SPT, WtoC, Presion, Velocidad): modelodef = pickle.load(open("modelodef.pkl", "rb")) prediction0 = modelodef.predict([[JET, Suelo,SPT, WtoC, Presion, Velocidad]]) prediction = np.round(prediction0,2) return prediction title = "ASSESSMENT OF UNIAXIAL COMPRESSIVE STRENGTH OF JET GROUTING" description = "This app corresponds to the research paper: Assessment of compressive strength of jet grouting by machine learning" article = """ Notes: - Click submit/enviar button to obtain the UCS prediction - Click clear/limpiar button to refresh text - Please note the application ranges of the variables in the above-referenced paper (https://doi.org/10.1016/j.jrmge.2023.03.008). Outside these ranges, the predictions may not be reliable - As a decimal separator you can use either a point or a comma """ app = gr.Interface( RCS, inputs=[ gr.Radio(['1', '2', '3'], label="Jet system. 1: Single. 2: Double. 3: Triple",value="1"), gr.Radio(['1', '2', '3', '4'], label="Soil type. 1: Coarse without fines. 2: Coarse with fines. 3: Fine. 4: Organic",value="1"), gr.Number(value=1, label="Nspt"), gr.Number(value=1, label="W/C"), gr.Number(value=1, label="Grout pressure (bar)"), gr.Number(value=1, label="Rotation speed (rpm)"), ], outputs=[gr.Text(label="UCS (MPa)")], title=title, description=description, article = article #, #theme="dark-seafoam" ) app.launch()