import pickle import numpy as np import gradio as gr import sklearn import pandas as pd from sklearn.model_selection import train_test_split from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.model_selection import KFold from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import StackingRegressor from sklearn.ensemble import RandomForestRegressor filename = 'DatabaseFinal0.csv' names0 = ['LL',"IP" ,"e0",'w', 'cc'] dataset=pd.read_csv(filename, names=names0) y = dataset['cc'] X0 = dataset.drop('cc', axis=1) impute_it = IterativeImputer() X2=impute_it.fit_transform(X0) X = pd.DataFrame(X2, columns=['LL',"IP" ,"e0",'w']) validation_size = 0.2 seed = 10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=validation_size, random_state=seed) model1 =ExtraTreesRegressor(max_depth=15, max_features=None, n_estimators=500,random_state=100,min_samples_split=12) model1= model1.fit(X_train, y_train) model2 =GradientBoostingRegressor(learning_rate=0.007, max_depth=2,n_estimators=1650, random_state=100,min_samples_split=9,max_features= 'log2') model2= model2.fit(X_train, y_train) model3 =RandomForestRegressor(n_estimators= 1000,min_samples_split= 11, min_samples_leaf= 1, max_features= None,max_depth= 6,bootstrap= True,random_state=100) model3= model3.fit(X_train, y_train) level1 = list() level1.append(('ET', model1)) level1.append(('GBR', model2)) level2 = model3 cv = KFold(n_splits=10, random_state=100,shuffle=True) modelodef = StackingRegressor(estimators=level1, final_estimator=level2, cv=cv, passthrough=True) modelodef.fit(X_train, y_train) pickle.dump(modelodef, open("modelodef.pkl", "wb")) def cc(LL,IP,e0,w): modelodef = pickle.load(open("modelodef.pkl", "rb")) prediction0 = modelodef.predict([[LL,IP,e0,w]]) prediction = np.round(prediction0,3) return prediction title = "A SUPER-LEARNER MACHINE LEARNING MODEL FOR A GLOBAL PREDICTION OF COMPRESSION INDEX IN CLAYS" #####################description = "This app corresponds to the research paper: A super-learner machine learning model for a global prediction of compression index in clays" description = "" article = """ Notes: - Click submit/enviar button to obtain the Compression index prediction - Click clear/limpiar button to refresh text - Please note the application ranges of the variables in the above-referenced paper (in publication process). Outside these ranges, the predictions may not be reliable - As a decimal separator you can use either a point or a comma """ #my_theme = gr.Theme.from_hub("bethecloud/storj_theme") my_theme = gr.Theme.from_hub("derekzen/stardust") app = gr.Interface( cc, inputs=[ gr.Number(value=30, label="Liquid limit (%)"), gr.Number(value=15, label="Plasticity index (%)"), gr.Number(value=0.800, label="Initial void ratio"), gr.Number(value=25, label="Natural water content (%)"), ], outputs=[gr.Text(label="Compression index")], title=title, description=description, article = article, share=True, theme=my_theme ) app.launch()