# # model_quantizer.py # from transformers import AutoModelForSequenceClassification # from optimum.onnxruntime import ORTOptimizer, ORTModelForSequenceClassification # from optimum.onnxruntime.configuration import OptimizationConfig # model = ORTModelForSequenceClassification.from_pretrained( # "Essay-Grader/roberta-ai-detector-20250401_232702", # from_transformers=True # ) # optimizer = ORTOptimizer.from_pretrained(model) # optimization_config = OptimizationConfig( # optimization_level=99, # enable_transformers_specific_optimizations=True, # optimize_for_gpu=True, # fp16=True # ) # optimizer.optimize( # save_dir="./optimized_model", # optimization_config=optimization_config # )