import torch from torch import nn from torch.nn import functional as F import math class SelfAttention(nn.Module): def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True): super().__init__() self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias) self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias) self.n_heads = n_heads self.d_head = d_embed // n_heads def forward(self, x, causal_mask=False): input_shape = x.shape batch_size, sequence_length, d_embed = input_shape interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head) q, k, v = self.in_proj(x).chunk(3, dim=-1) q = q.view(interim_shape).transpose(1, 2) k = k.view(interim_shape).transpose(1, 2) v = v.view(interim_shape).transpose(1, 2) weight = q @ k.transpose(-1, -2) if causal_mask: mask = torch.ones_like(weight, dtype=torch.bool).triu(1) weight.masked_fill_(mask, -torch.inf) weight /= math.sqrt(self.d_head) weight = F.softmax(weight, dim=-1) output = weight @ v output = output.transpose(1, 2) output = output.reshape(input_shape) output = self.out_proj(output) return output class CrossAttention(nn.Module): def __init__(self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True): super().__init__() self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias) self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias) self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias) self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias) self.n_heads = n_heads self.d_head = d_embed // n_heads def forward(self, x, y): input_shape = x.shape batch_size, sequence_length, d_embed = input_shape interim_shape = (batch_size, -1, self.n_heads, self.d_head) q = self.q_proj(x) k = self.k_proj(y) v = self.v_proj(y) q = q.view(interim_shape).transpose(1, 2) k = k.view(interim_shape).transpose(1, 2) v = v.view(interim_shape).transpose(1, 2) weight = q @ k.transpose(-1, -2) weight /= math.sqrt(self.d_head) weight = F.softmax(weight, dim=-1) output = weight @ v output = output.transpose(1, 2).contiguous() output = output.view(input_shape) output = self.out_proj(output) return output