import os import cv2 import glob import numpy as np import imageio from MiDaS.MiDaS_utils import write_depth BOOST_BASE = 'BoostingMonocularDepth' BOOST_INPUTS = 'inputs' BOOST_OUTPUTS = 'outputs' def run_boostmonodepth(img_names, src_folder, depth_folder): if not isinstance(img_names, list): img_names = [img_names] # remove irrelevant files first clean_folder(os.path.join(BOOST_BASE, BOOST_INPUTS)) clean_folder(os.path.join(BOOST_BASE, BOOST_OUTPUTS)) tgt_names = [] for img_name in img_names: base_name = os.path.basename(img_name) tgt_name = os.path.join(BOOST_BASE, BOOST_INPUTS, base_name) os.system(f'cp {img_name} {tgt_name}') # keep only the file name here. # they save all depth as .png file tgt_names.append(os.path.basename(tgt_name).replace('.jpg', '.png')) os.system(f'cd {BOOST_BASE} && python run.py --Final --data_dir {BOOST_INPUTS}/ --output_dir {BOOST_OUTPUTS} --depthNet 0') for i, (img_name, tgt_name) in enumerate(zip(img_names, tgt_names)): img = imageio.imread(img_name) H, W = img.shape[:2] scale = 640. / max(H, W) # resize and save depth target_height, target_width = int(round(H * scale)), int(round(W * scale)) depth = imageio.imread(os.path.join(BOOST_BASE, BOOST_OUTPUTS, tgt_name)) depth = np.array(depth).astype(np.float32) depth = resize_depth(depth, target_width, target_height) np.save(os.path.join(depth_folder, tgt_name.replace('.png', '.npy')), depth / 32768. - 1.) write_depth(os.path.join(depth_folder, tgt_name.replace('.png', '')), depth) def clean_folder(folder, img_exts=['.png', '.jpg', '.npy']): for img_ext in img_exts: paths_to_check = os.path.join(folder, f'*{img_ext}') if len(glob.glob(paths_to_check)) == 0: continue print(paths_to_check) os.system(f'rm {paths_to_check}') def resize_depth(depth, width, height): """Resize numpy (or image read by imageio) depth map Args: depth (numpy): depth width (int): image width height (int): image height Returns: array: processed depth """ depth = cv2.blur(depth, (3, 3)) return cv2.resize(depth, (width, height), interpolation=cv2.INTER_AREA)