import streamlit as st import re import fasttext model = fasttext.load_model("fasttext_model.bin") def preprocess_input(text): text = re.sub(r'[^\w\s\']|\n', ' ', text) text = re.sub(' +', ' ', text) return text.strip().lower() def classify_transcript(transcript): preprocessed_transcript = preprocess_input(transcript) prediction = model.predict(preprocessed_transcript) predicted_label = prediction[0][0].replace('__label__', '') return predicted_label def main(): st.title("FASTTEXT MENTAL HEALTH CLASSIFIER") st.write("Type 'exit' in the input box below to end the conversation.") user_input = st.text_area("Please enter the transcript of the patient:", "") if st.button("Classify"): if user_input.lower() == 'exit': st.stop() else: predicted_disease = classify_transcript(user_input) st.write(f"Based on the transcript, the predicted disease category is: {predicted_disease}") if __name__ == "__main__": main()