import streamlit as st from transformers import AutoTokenizer, AutoModel import torch from sentence_transformers import util @st.cache def load_raw_sentences(filename): with open(filename) as f: return f.readlines() @st.cache def load_embeddings(filename): with open(filename) as f: return torch.load(filename,map_location=torch.device('cpu') ) #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask def findTopKMostSimilar(query_embedding, embeddings, all_sentences, k): cosine_scores = util.pytorch_cos_sim(query_embedding, embeddings) cosine_scores_list = cosine_scores.squeeze().tolist() pairs = [] for idx,score in enumerate(cosine_scores_list): if idx < len(all_sentences): pairs.append({'score': score, 'text': all_sentences[idx]}) pairs = sorted(pairs, key=lambda x: x['score'], reverse=True) return pairs[0:k] def calculateEmbeddings(sentences,tokenizer,model): tokenized_sentences = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') with torch.no_grad(): model_output = model(**tokenized_sentences) sentence_embeddings = mean_pooling(model_output, tokenized_sentences['attention_mask']) return sentence_embeddings multilingual_checkpoint = 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2' tokenizer = AutoTokenizer.from_pretrained(multilingual_checkpoint) model = AutoModel.from_pretrained(multilingual_checkpoint) raw_text_file = 'data/processed/shortened_abstracts_hu_2021_09_01.txt' all_sentences = load_raw_sentences(raw_text_file) embeddings_file = 'data/processed/shortened_abstracts_hu_2021_09_01_embedded.pt' all_embeddings = load_embeddings(embeddings_file) st.header('Wikipedia absztrakt kereső') st.subheader('Search Wikipedia abstracts in Hungarian') st.caption('Input some search term and see the top-5 most similar wikipedia abstracts') input_query = st.text_area("Adjon meg egy tetszőleges kifejezést és a rendszer visszaadja az 5 hozzá legjobban hasonlító Wikipedia absztraktot", value='Hol élnek a bengali tigrisek?') if input_query: query_embedding = calculateEmbeddings([input_query],tokenizer,model) top_pairs = findTopKMostSimilar(query_embedding, all_embeddings, all_sentences, 5) st.json(top_pairs)