class FECController: def __init__(self): pass def generate_prompt(self, final_uesp): # Validate required keys required_keys = [ 'emotion_family', 'primary_emotion_code', 'emotion_arc_trajectory', 'resonance_pattern' ] for key in required_keys: if key not in final_uesp: raise KeyError(f"Missing required key: {key}") # Map human-readable emotion label from code emotion_code = final_uesp['primary_emotion_code'] if emotion_code.startswith("VAR-"): emotion_label = emotion_code.replace("VAR-", "").split('-')[0].title() elif emotion_code.startswith("FAM-"): emotion_label = emotion_code.replace("FAM-", "").title() else: emotion_label = "Unknown" # Base fields arc = final_uesp['emotion_arc_trajectory'] resonance = final_uesp['resonance_pattern'] # Optional fields with fallbacks blend_states = final_uesp.get('blend_states', 'None detected') response_strategy = final_uesp.get('response_strategy', 'RSM-DEFAULT') tone_classification = final_uesp.get('tone_classification', 'TBD') # Build Fusion Prompt fusion_prompt = f""" Contextual Emotional State: - Primary Emotion: {emotion_label} - Emotional Arc: {arc} - Resonance: {resonance} - Tone: {tone_classification} - Blend States: {blend_states} - Intervention Strategy: {response_strategy} Empathic Objective: Align your response tone and content with the above emotional context. Prioritize emotional authenticity, HEART-compliant care, and safety. Do not merely reflect emotion — respond in an emotionally aligned and supportive manner that honors the user’s lived experience. HEART Compliance: Response must align with HEART™ ethical principles — transparency, alignment, contextuality, traceability, and emotional safety. """.strip() return fusion_prompt