import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Load model and tokenizer only once model_name = "EmTpro01/codellama-Code-Generator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True) # Create pipeline once pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_response(prompt): # Use the pre-loaded pipeline response = pipe(prompt, max_length=1024, temperature=0.7, top_p=0.95, repetition_penalty=1.15) return response[0]['generated_text'] iface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="Code Generation Model" ) iface.launch()