# https://elrmnd-vocal-pdf-summarizer.hf.space # Import libraries import gradio as gr import PyPDF2 from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from gtts import gTTS from io import BytesIO # Function to extract text from PDF # Defines a function to extract raw text from a PDF file def extract_text(pdf_file): pdfReader = PyPDF2.PdfReader(pdf_file) pageObj = pdfReader.pages[0] return pageObj.extract_text() # Function to summarize text # Defines a function to summarize the extracted text using facebook/bart-large-cnn def summarize_text(text): sentences = text.split(". ") start = -1 # Default value if "Abstract" is not found end = -1 for i, sentence in enumerate(sentences): if "Abstract" in sentence: start = i + 1 end = start + 6 break if start != -1: abstract = ". ".join(sentences[start:end + 1]) # Load BART model & tokenizer tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary") model = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/led-base-book-summary") # Tokenize abstract inputs = tokenizer(abstract, max_length=1024, return_tensors="pt", truncation=True) # Generate summary summary_ids = model.generate(inputs['input_ids'], max_length=50, min_length=30, no_repeat_ngram_size=3, encoder_no_repeat_ngram_size=3, repetition_penalty=3.5, num_beams=4, do_sample=True, early_stopping=False) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) if '.' in summary: index = summary.rindex('.') if index != -1: summary = summary[:index + 1] else: summary = "Abstract not found in the document." return summary # Function to convert text to audio # Defines a function to convert text to an audio file using Google Text-to-Speech def text_to_audio(text): tts = gTTS(text, lang='en') buffer = BytesIO() tts.write_to_fp(buffer) buffer.seek(0) return buffer.read() ### Main function ### The main function that ties everything together: ### extracts text, summarizes, and converts to audio. def audio_pdf(pdf_file): text = extract_text(pdf_file) summary = summarize_text(text) audio = text_to_audio(summary) return summary, audio # Define Gradio interface # Gradio web interface with a file input, text output to display the summary # and audio output to play the audio file. # Launches the interface inputs = gr.File() summary_text = gr.Text() audio_summary = gr.Audio() iface = gr.Interface( fn=audio_pdf, inputs=inputs, outputs=[summary_text, audio_summary], title="The Vocal PDF Summarizer", description="I will summarize only PDFs with an abstract and transform it into audio. If abstract is not present in the document a message will show", examples=["Article 11 Hidden Technical Debt in Machine Learning Systems.pdf", "Article 6 BloombergGPT_ A Large Language Model for Finance.pdf", "Article 5 A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks.pdf", "Article 8 Llama 2_ Open Foundation and Fine-Tuned Chat Models.pdf" ] ) iface.launch() # Launch the interface