import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load your Llama model and tokenizer. # Replace the model identifier with the path or model name you want to use. model_name = "meta-llama/Meta-Llama-3.1-70B-Instruct" # or another available checkpoint tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") def generate_response(prompt: str) -> str: """ Given an input prompt, generate a response using the Llama model. """ inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface for interactive usage. interface = gr.Interface( fn=generate_response, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter your prompt here..."), outputs="text", title="Llama Interactive Generator", description="Enter a prompt to see the Llama model generate a response." ) if __name__ == "__main__": interface.launch(debug=True)