import os os.system("pip install deepspeed") os.system("pip freeze") import gradio as gr import re from magma import Magma from magma.image_input import ImageInput from huggingface_hub import hf_hub_url, cached_download checkpoint_url = hf_hub_url(repo_id="osanseviero/magma", filename="model.pt") checkpoint_path = cached_download(checkpoint_url) model = Magma.from_checkpoint( config_path = "configs/MAGMA_v1.yml", checkpoint_path = checkpoint_path, device = 'cuda:0' ) def generate(image,context, length, temperature, top_k): # context = context.strip() # url_regex = r'https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)' # lines = context.split('\n') # inputs = [] # for line in lines: # if re.match(url_regex, line): # try: # inputs.append(ImageInput(line)) # except Exception as e: # return str(e) # else: # inputs.append(line) inputs =[ ## supports urls and path/to/image ImageInput(image), context ] ## returns a tensor of shape: (1, 149, 4096) embeddings = model.preprocess_inputs(inputs) ## returns a list of length embeddings.shape[0] (batch size) output = model.generate( embeddings = embeddings, max_steps = length, temperature = (0.01 if temperature == 0 else temperature), top_k = top_k ) return context + output[0] iface = gr.Interface( fn=generate, inputs=[ [gr.inputs.Image(type="filepath"),gr.inputs.Textbox( label="Prompt:", default="Describe the painting:", lines=7)], gr.inputs.Slider(minimum=1, maximum=100, default=15, step=1, label="Output tokens:"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.7, label='Temperature'), gr.inputs.Slider(minimum=0, maximum=100, default=0, step=1, label='Top K') ], outputs=["textbox"] ).launch()