# https://python.langchain.com/docs/modules/chains/how_to/custom_chain # Including reformulation of the question in the chain import json from langchain import PromptTemplate, LLMChain from langchain.chains import RetrievalQAWithSourcesChain,QAWithSourcesChain from langchain.chains import TransformChain, SequentialChain from langchain.chains.qa_with_sources import load_qa_with_sources_chain from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts from climateqa.custom_retrieval_chain import CustomRetrievalQAWithSourcesChain def load_combine_documents_chain(llm): prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"]) qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt) return qa_chain def load_qa_chain_with_docs(llm): """Load a QA chain with documents. Useful when you already have retrieved docs To be called with this input ``` output = chain({ "question":query, "audience":"experts climate scientists", "docs":docs, "language":"English", }) ``` """ qa_chain = load_combine_documents_chain(llm) chain = QAWithSourcesChain( input_docs_key = "docs", combine_documents_chain = qa_chain, return_source_documents = True, ) return chain def load_qa_chain_with_text(llm): prompt = PromptTemplate( template = answer_prompt, input_variables=["question","audience","language","summaries"], ) qa_chain = LLMChain(llm = llm,prompt = prompt) return qa_chain def load_qa_chain_with_retriever(retriever,llm): qa_chain = load_combine_documents_chain(llm) # This could be improved by providing a document prompt to avoid modifying page_content in the docs # See here https://github.com/langchain-ai/langchain/issues/3523 answer_chain = CustomRetrievalQAWithSourcesChain( combine_documents_chain = qa_chain, retriever=retriever, return_source_documents = True, verbose = True, fallback_answer="**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**", ) return answer_chain def load_climateqa_chain(retriever,llm_reformulation,llm_answer): reformulation_chain = load_reformulation_chain(llm_reformulation) answer_chain = load_qa_chain_with_retriever(retriever,llm_answer) climateqa_chain = SequentialChain( chains = [reformulation_chain,answer_chain], input_variables=["query","audience"], output_variables=["answer","question","language","source_documents"], return_all = True, verbose = True, ) return climateqa_chain