diff --git "a/sandbox/20240310 - CQA - Semantic Routing 1.ipynb" "b/sandbox/20240310 - CQA - Semantic Routing 1.ipynb" --- "a/sandbox/20240310 - CQA - Semantic Routing 1.ipynb" +++ "b/sandbox/20240310 - CQA - Semantic Routing 1.ipynb" @@ -71,8 +71,7 @@ "output_type": "stream", "text": [ "/home/tim/anaconda3/envs/climateqa/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n", - "INFO:flashrank.Ranker:Downloading ms-marco-TinyBERT-L-2-v2...\n" + " from .autonotebook import tqdm as notebook_tqdm\n" ] }, { @@ -82,13 +81,6 @@ "Loading FlashRankRanker model ms-marco-TinyBERT-L-2-v2\n", "Loading model FlashRank model ms-marco-TinyBERT-L-2-v2...\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ms-marco-TinyBERT-L-2-v2.zip: 100%|██████████| 3.26M/3.26M [00:00<00:00, 69.9MiB/s]\n" - ] } ], "source": [ @@ -113,20 +105,53 @@ "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "Loading embeddings model: BAAI/bge-base-en-v1.5\n" + "INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: BAAI/bge-base-en-v1.5\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: BAAI/bge-base-en-v1.5\n", - "INFO:sentence_transformers.SentenceTransformer:Use pytorch device_name: cpu\n", - "/home/tim/ai4s/climate_qa/climate-question-answering/climateqa/engine/vectorstore.py:32: LangChainDeprecationWarning: The class `Pinecone` was deprecated in LangChain 0.0.18 and will be removed in 0.3.0. An updated version of the class exists in the langchain-pinecone package and should be used instead. To use it run `pip install -U langchain-pinecone` and import as `from langchain_pinecone import Pinecone`.\n", - " vectorstore = PineconeVectorstore(\n" + "Loading embeddings model: BAAI/bge-base-en-v1.5\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[4], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mclimateqa\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mengine\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01membeddings\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_embeddings_function\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mclimateqa\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mknowledge\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mretriever\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ClimateQARetriever\n\u001b[0;32m----> 5\u001b[0m embeddings_function \u001b[38;5;241m=\u001b[39m \u001b[43mget_embeddings_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m vectorstore \u001b[38;5;241m=\u001b[39m get_pinecone_vectorstore(embeddings_function)\n", + "File \u001b[0;32m~/ai4s/climate_qa/climate-question-answering/climateqa/engine/embeddings.py:15\u001b[0m, in \u001b[0;36mget_embeddings_function\u001b[0;34m(version, query_instruction)\u001b[0m\n\u001b[1;32m 13\u001b[0m encode_kwargs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnormalize_embeddings\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;28;01mTrue\u001b[39;00m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mshow_progress_bar\u001b[39m\u001b[38;5;124m\"\u001b[39m:\u001b[38;5;28;01mFalse\u001b[39;00m} \u001b[38;5;66;03m# set True to compute cosine similarity\u001b[39;00m\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoading embeddings model: \u001b[39m\u001b[38;5;124m\"\u001b[39m, model_name)\n\u001b[0;32m---> 15\u001b[0m embeddings_function \u001b[38;5;241m=\u001b[39m \u001b[43mHuggingFaceBgeEmbeddings\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 16\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 17\u001b[0m \u001b[43m \u001b[49m\u001b[43mencode_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencode_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 18\u001b[0m \u001b[43m \u001b[49m\u001b[43mquery_instruction\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquery_instruction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 19\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 23\u001b[0m embeddings_function \u001b[38;5;241m=\u001b[39m HuggingFaceEmbeddings(model_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msentence-transformers/multi-qa-mpnet-base-dot-v1\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/langchain_community/embeddings/huggingface.py:262\u001b[0m, in \u001b[0;36mHuggingFaceBgeEmbeddings.__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[1;32m 258\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCould not import sentence_transformers python package. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 259\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease install it with `pip install sentence_transformers`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 260\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n\u001b[0;32m--> 262\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclient \u001b[38;5;241m=\u001b[39m \u001b[43msentence_transformers\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSentenceTransformer\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 263\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcache_folder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcache_folder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_kwargs\u001b[49m\n\u001b[1;32m 264\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 265\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m-zh\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_name:\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquery_instruction \u001b[38;5;241m=\u001b[39m DEFAULT_QUERY_BGE_INSTRUCTION_ZH\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/sentence_transformers/SentenceTransformer.py:191\u001b[0m, in \u001b[0;36mSentenceTransformer.__init__\u001b[0;34m(self, model_name_or_path, modules, device, prompts, default_prompt_name, cache_folder, trust_remote_code, revision, token, use_auth_token)\u001b[0m\n\u001b[1;32m 188\u001b[0m model_name_or_path \u001b[38;5;241m=\u001b[39m __MODEL_HUB_ORGANIZATION__ \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m model_name_or_path\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_sentence_transformer_model(model_name_or_path, token, cache_folder\u001b[38;5;241m=\u001b[39mcache_folder, revision\u001b[38;5;241m=\u001b[39mrevision):\n\u001b[0;32m--> 191\u001b[0m modules \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_load_sbert_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 192\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 193\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_folder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_folder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 196\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 199\u001b[0m modules \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_load_auto_model(\n\u001b[1;32m 200\u001b[0m model_name_or_path,\n\u001b[1;32m 201\u001b[0m token\u001b[38;5;241m=\u001b[39mtoken,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 204\u001b[0m trust_remote_code\u001b[38;5;241m=\u001b[39mtrust_remote_code,\n\u001b[1;32m 205\u001b[0m )\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/sentence_transformers/SentenceTransformer.py:1239\u001b[0m, in \u001b[0;36mSentenceTransformer._load_sbert_model\u001b[0;34m(self, model_name_or_path, token, cache_folder, revision, trust_remote_code)\u001b[0m\n\u001b[1;32m 1237\u001b[0m module_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1238\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1239\u001b[0m module_path \u001b[38;5;241m=\u001b[39m \u001b[43mload_dir_path\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1240\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1241\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodule_config\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpath\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1242\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1243\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_folder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_folder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1244\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1245\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1246\u001b[0m module \u001b[38;5;241m=\u001b[39m module_class\u001b[38;5;241m.\u001b[39mload(module_path)\n\u001b[1;32m 1247\u001b[0m modules[module_config[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m]] \u001b[38;5;241m=\u001b[39m module\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/sentence_transformers/util.py:567\u001b[0m, in \u001b[0;36mload_dir_path\u001b[0;34m(model_name_or_path, directory, token, cache_folder, revision)\u001b[0m\n\u001b[1;32m 565\u001b[0m \u001b[38;5;66;03m# Try to download from the remote\u001b[39;00m\n\u001b[1;32m 566\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 567\u001b[0m repo_path \u001b[38;5;241m=\u001b[39m \u001b[43msnapshot_download\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 568\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 569\u001b[0m \u001b[38;5;66;03m# Otherwise, try local (i.e. cache) only\u001b[39;00m\n\u001b[1;32m 570\u001b[0m download_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlocal_files_only\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/_snapshot_download.py:155\u001b[0m, in \u001b[0;36msnapshot_download\u001b[0;34m(repo_id, repo_type, revision, cache_dir, local_dir, library_name, library_version, user_agent, proxies, etag_timeout, force_download, token, local_files_only, allow_patterns, ignore_patterns, max_workers, tqdm_class, headers, endpoint, local_dir_use_symlinks, resume_download)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 147\u001b[0m \u001b[38;5;66;03m# if we have internet connection we want to list files to download\u001b[39;00m\n\u001b[1;32m 148\u001b[0m api \u001b[38;5;241m=\u001b[39m HfApi(\n\u001b[1;32m 149\u001b[0m library_name\u001b[38;5;241m=\u001b[39mlibrary_name,\n\u001b[1;32m 150\u001b[0m library_version\u001b[38;5;241m=\u001b[39mlibrary_version,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 153\u001b[0m headers\u001b[38;5;241m=\u001b[39mheaders,\n\u001b[1;32m 154\u001b[0m )\n\u001b[0;32m--> 155\u001b[0m repo_info \u001b[38;5;241m=\u001b[39m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepo_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 156\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (requests\u001b[38;5;241m.\u001b[39mexceptions\u001b[38;5;241m.\u001b[39mSSLError, requests\u001b[38;5;241m.\u001b[39mexceptions\u001b[38;5;241m.\u001b[39mProxyError):\n\u001b[1;32m 157\u001b[0m \u001b[38;5;66;03m# Actually raise for those subclasses of ConnectionError\u001b[39;00m\n\u001b[1;32m 158\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/hf_api.py:2682\u001b[0m, in \u001b[0;36mHfApi.repo_info\u001b[0;34m(self, repo_id, revision, repo_type, timeout, files_metadata, expand, token)\u001b[0m\n\u001b[1;32m 2680\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 2681\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnsupported repo type.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2682\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmethod\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2683\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2684\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexpand\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiles_metadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfiles_metadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2689\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/hf_api.py:2466\u001b[0m, in \u001b[0;36mHfApi.model_info\u001b[0;34m(self, repo_id, revision, timeout, securityStatus, files_metadata, expand, token)\u001b[0m\n\u001b[1;32m 2464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m expand:\n\u001b[1;32m 2465\u001b[0m params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexpand\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m expand\n\u001b[0;32m-> 2466\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43mget_session\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2467\u001b[0m hf_raise_for_status(r)\n\u001b[1;32m 2468\u001b[0m data \u001b[38;5;241m=\u001b[39m r\u001b[38;5;241m.\u001b[39mjson()\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/requests/sessions.py:602\u001b[0m, in \u001b[0;36mSession.get\u001b[0;34m(self, url, **kwargs)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"Sends a GET request. Returns :class:`Response` object.\u001b[39;00m\n\u001b[1;32m 595\u001b[0m \n\u001b[1;32m 596\u001b[0m \u001b[38;5;124;03m:param url: URL for the new :class:`Request` object.\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;124;03m:param \\*\\*kwargs: Optional arguments that ``request`` takes.\u001b[39;00m\n\u001b[1;32m 598\u001b[0m \u001b[38;5;124;03m:rtype: requests.Response\u001b[39;00m\n\u001b[1;32m 599\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 601\u001b[0m kwargs\u001b[38;5;241m.\u001b[39msetdefault(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m--> 602\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 584\u001b[0m send_kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimeout\u001b[39m\u001b[38;5;124m\"\u001b[39m: timeout,\n\u001b[1;32m 586\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m: allow_redirects,\n\u001b[1;32m 587\u001b[0m }\n\u001b[1;32m 588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 700\u001b[0m start \u001b[38;5;241m=\u001b[39m preferred_clock()\n\u001b[1;32m 702\u001b[0m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43madapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[1;32m 706\u001b[0m elapsed \u001b[38;5;241m=\u001b[39m preferred_clock() \u001b[38;5;241m-\u001b[39m start\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/huggingface_hub/utils/_http.py:93\u001b[0m, in \u001b[0;36mUniqueRequestIdAdapter.send\u001b[0;34m(self, request, *args, **kwargs)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Catch any RequestException to append request id to the error message for debugging.\"\"\"\u001b[39;00m\n\u001b[1;32m 92\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 93\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 94\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m requests\u001b[38;5;241m.\u001b[39mRequestException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 95\u001b[0m request_id \u001b[38;5;241m=\u001b[39m request\u001b[38;5;241m.\u001b[39mheaders\u001b[38;5;241m.\u001b[39mget(X_AMZN_TRACE_ID)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/requests/adapters.py:667\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 664\u001b[0m timeout \u001b[38;5;241m=\u001b[39m TimeoutSauce(connect\u001b[38;5;241m=\u001b[39mtimeout, read\u001b[38;5;241m=\u001b[39mtimeout)\n\u001b[1;32m 666\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 667\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 668\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 669\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 670\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 671\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[43mredirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 673\u001b[0m \u001b[43m \u001b[49m\u001b[43massert_same_host\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 674\u001b[0m \u001b[43m \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 675\u001b[0m \u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 676\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 677\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 678\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 679\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 681\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ProtocolError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[1;32m 682\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m(err, request\u001b[38;5;241m=\u001b[39mrequest)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/urllib3/connectionpool.py:789\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)\u001b[0m\n\u001b[1;32m 786\u001b[0m response_conn \u001b[38;5;241m=\u001b[39m conn \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m release_conn \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 788\u001b[0m \u001b[38;5;66;03m# Make the request on the HTTPConnection object\u001b[39;00m\n\u001b[0;32m--> 789\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 790\u001b[0m \u001b[43m \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 791\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 792\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 794\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 796\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 797\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 798\u001b[0m \u001b[43m \u001b[49m\u001b[43mresponse_conn\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresponse_conn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 799\u001b[0m \u001b[43m \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpreload_content\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 800\u001b[0m \u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdecode_content\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 801\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mresponse_kw\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 802\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;66;03m# Everything went great!\u001b[39;00m\n\u001b[1;32m 805\u001b[0m clean_exit \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/urllib3/connectionpool.py:536\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)\u001b[0m\n\u001b[1;32m 534\u001b[0m \u001b[38;5;66;03m# Receive the response from the server\u001b[39;00m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 536\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetresponse\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 537\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (BaseSSLError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 538\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raise_timeout(err\u001b[38;5;241m=\u001b[39me, url\u001b[38;5;241m=\u001b[39murl, timeout_value\u001b[38;5;241m=\u001b[39mread_timeout)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/site-packages/urllib3/connection.py:507\u001b[0m, in \u001b[0;36mHTTPConnection.getresponse\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 504\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mresponse\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m HTTPResponse\n\u001b[1;32m 506\u001b[0m \u001b[38;5;66;03m# Get the response from http.client.HTTPConnection\u001b[39;00m\n\u001b[0;32m--> 507\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetresponse\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 509\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 510\u001b[0m assert_header_parsing(httplib_response\u001b[38;5;241m.\u001b[39mmsg)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/http/client.py:1395\u001b[0m, in \u001b[0;36mHTTPConnection.getresponse\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1393\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1394\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1395\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbegin\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1396\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m:\n\u001b[1;32m 1397\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclose()\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/http/client.py:325\u001b[0m, in \u001b[0;36mHTTPResponse.begin\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# read until we get a non-100 response\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 325\u001b[0m version, status, reason \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_read_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m status \u001b[38;5;241m!=\u001b[39m CONTINUE:\n\u001b[1;32m 327\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/http/client.py:286\u001b[0m, in \u001b[0;36mHTTPResponse._read_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_read_status\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 286\u001b[0m line \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfp\u001b[38;5;241m.\u001b[39mreadline(_MAXLINE \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124miso-8859-1\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(line) \u001b[38;5;241m>\u001b[39m _MAXLINE:\n\u001b[1;32m 288\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LineTooLong(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstatus line\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/socket.py:706\u001b[0m, in \u001b[0;36mSocketIO.readinto\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 705\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 706\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecv_into\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 707\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m timeout:\n\u001b[1;32m 708\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_timeout_occurred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/ssl.py:1314\u001b[0m, in \u001b[0;36mSSLSocket.recv_into\u001b[0;34m(self, buffer, nbytes, flags)\u001b[0m\n\u001b[1;32m 1310\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flags \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1311\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1312\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnon-zero flags not allowed in calls to recv_into() on \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m 1313\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n\u001b[0;32m-> 1314\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnbytes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1315\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1316\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrecv_into(buffer, nbytes, flags)\n", + "File \u001b[0;32m~/anaconda3/envs/climateqa/lib/python3.11/ssl.py:1166\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m 1164\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1165\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m buffer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sslobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1167\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1168\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sslobj\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;28mlen\u001b[39m)\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], @@ -141,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "882811c8-5890-4048-8630-d052c5179d7d", "metadata": {}, "outputs": [], @@ -151,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "51aed81d-860b-409a-bae0-f0e1eeb0f120", "metadata": {}, "outputs": [ @@ -161,7 +186,7 @@ "False" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -1211,11 +1236,31 @@ "execution_count": 8, "id": "b91f4f58", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:chromadb.telemetry.posthog:Anonymized telemetry enabled. See https://docs.trychroma.com/telemetry for more information.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Translate query ----\n" + ] + } + ], "source": [ "from climateqa.engine.graph import make_graph_agent,display_graph\n", "\n", - "app = make_graph_agent(llm,vectorstore,reranker)\n" + "# app = make_graph_agent(llm,vectorstore,reranker)\n", + "\n", + "from langchain_chroma import Chroma\n", + "\n", + "vectorstore_graphs = Chroma(persist_directory=\"/home/tim/ai4s/climate_qa/climate-question-answering/data/vectorstore_owid\", embedding_function=embeddings_function)\n", + "app = make_graph_agent(llm, vectorstore_ipcc= vectorstore, vectorstore_graphs = vectorstore_graphs, reranker=reranker)\n" ] }, { @@ -1226,7 +1271,7 @@ "outputs": [ { "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAM9AqcDASIAAhEBAxEB/8QAHQABAQADAAMBAQAAAAAAAAAAAAYEBQcBAwgCCf/EAFwQAAEEAQIDAgkFCQsKAwcFAQABAgMEBQYRBxIhEzEUFRciMkFRVpQIQmHS0xYjJFRVcXWV0TM1NnOBkZKTs7TUJTQ3Q1JidKGxslNywQlEV4KiwsMYRUZjg5b/xAAbAQEBAQEBAQEBAAAAAAAAAAAAAQIEAwUGB//EADgRAQABAgMFBAkCBgMBAAAAAAABAhEDElEUITFSkQRBcdETM2FikqGxwdIigQUVIzLh8EJTsuL/2gAMAwEAAhEDEQA/AP6pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrs1mWYasx/YyWrEz0ir1YdueZ6+pN+iIiIqqq9ERFVeiGqaZqm0DYmul1Jia71ZLlKUbk+a+wxF/6mn+4pub+/amm8bvd18A3VKUSf7KRd0n/AJpOZV67I1F5U2ceksHCzkjwuPYzfflbVjRP+h7ZcKndMzPh/v2Xc8/dVhPyxQ+KZ+0fdVhPyxQ+KZ+08/cthfyRQ+GZ+wfcthfyRQ+GZ+wf0fb8l3PH3VYT8sUPimftH3VYT8sUPimftPP3LYX8kUPhmfsH3LYX8kUPhmfsH9H2/I3PH3VYT8sUPimftH3VYT8sUPimftPP3LYX8kUPhmfsH3LYX8kUPhmfsH9H2/I3P3DqPE2HoyLKUpXr81lhir/yU2JqZNI4KZvLJhce9u++zqsapv8AzGu+45cEnbaZmTGuan73SOc6lKn+zyf6pfUjo9tuiq16Jyqy4VW6JmPHh/v7JuU4MDC5iPNVHSsikryxvdFPWmREkhkTva5EVU9ioqKqKio5FVFRVzzxqiaZtKAAMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAExjtsvrvLWX7OjxMUdGBOvmSSNSWV3s6tdAietNne0pyY06ngWr9V1XoqOsTV8izdOisdAyHovr2Wsu/s3T2nRhf21z7PvH2WO9Tgws1m8dpvF2Mllr9XF46u3mmuXZmwwxJvtu57lRETdUTqvrI1vyg+Frl2TiVpBV2Vemeq/aHOi5uW4aFSe1YekUELHSSPXua1E3Vf5kOJ3flLuzHB7VutdN6N1GkWOw0mVxlnKUo4619nK7klYqTbrGm3O5qqx/IiqiKqoi21bjpw5zFiOjjde6VymRsuSGtRr5us+SxI7o2NrUeqqrlVERERe84ro3g/rO9X4hYetph/DXR+e0vZx0enbGYjv1WZSbnb4RWbGrkgh5XKjmpycyqi8ibAdP07xpyVjhVhdT39BarnyFzsYfFlGpXlsTOdCkizsRs6sZCvVEc97V32RURVTf0W/lPaUo6ArarmoZxsD82zT1jG+Ap4dTuq/kWKWHm70XboxXKqOTlR25z7OaV4iau4d8P8bmOH9t2P0/Yir5zS0ObqtXMxMqrGyRsjZEYsTZuV6xSObzIibp02NPpXgZrDE6bTGM0bVwcDeJ+P1TBRo3oHwV8cnYK9Gru3zouzcjmo3qvocydQLzVnyiNSYXiLw/w1bhzqPwPO18jPapSxU/DVWDlaxI/wvkRE353cy9Wvj5evM1O9nIOMundUR8ReHetdNYBdUJgPGNa5i4rkVaZ0dqKNrZGOlc1i8rok3RVRdndN9igfx+4bVHugv8QNKY+9EvJPUnztVJIJE6OY5O072rui/SgF+CAd8oPhaxdncStINXZF2XPVe5eqf6wtsZk6eax1a/j7cF+hZjbNBarSJJFKxybtc1zVVHIqdUVOigaC1tiNf0ZY9mxZitJBM1PnTQ+fG72b8iyoq967MTqjU2qCYzaeGa401WZuq1W2bz126NRGJCiKvtVZl29vKvsKc6MX+2ie+33mPpZZ7gAHOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkz+KsPtVctjmsdk6bXMSJ7uVtiFyor41X1L5rVaq9zmp6lU3YN0VTRN4GsxGcoajrS+DvR7o15LFWVNpYH/7EjF6tX8/emypuiopleLaa/8AusH9Wn7DAzWk8Xn5o57ddUtxt5Y7leV8E7E9iSMVHIm/q32MBdESIm0epc7G3ffZLLHf83MVf+Z65cKrfFVvGPvHlC7m/bj6rHI5taFrkXdFSNEVDIJb7iJ/enPf18X2Q+4if3pz39fF9kPR4fP8pW0aqkHPNb6fv6f0Xn8pU1Tm1tUcfYsw9rNEredkbnN3+9p03RDJ03pe5ldO4q7PqnOdvZqRTSck0SN5nMRV2+9926j0eHz/ACktGq6Md2OqucqrWhVV6qqxp1J77iJ/enPf18X2Q+4if3pz39fF9kPR4fP8pLRqoPFtT8Vh/q0/YYuXzlLT1eNJlVZZPMr1IG80s7k+bGxO/wBW/qROqqiIqmrboiRekmpc7K3fflWyxv8AzaxF/wCZscLpXF4CSSanW/CpWo2S3PI6axI3fdEdK9Veqb7rsq7dVGXCp3zVfwj7/wCE3PXp/Ez157mTyCR+NLvKkjYnK5sMTN+ziaq96N5nKq9N3PcuyIqIm6APKqqa5vKcQAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS/FNUThjq/fonie5v8A1LzN0R/AzAfo+v8A2bTC4pf6MdX937z3O/bb9xf7TN0R/AzAfo+v/ZtA3YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbip14Yav6on+R7nVe5PvDzO0R/AvAev/J9f+zaYPFTbyYaw37vE9z1b/6h5naI/gXgP0fX/s2gbsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUyOq8hYuWK2DpVrLKz1imtXJ3Rx9onexiNY5Xcq7Iq9ERV2TdUVE9cPDqxJtStrqsER481h+I4P4qb7MePNYfiOD+Km+zPfZa9Y6wWW4Ijx5rD8RwfxU32Y8eaw/EcH8VN9mNlr1jrBZbgiPHmsPxHB/FTfZjx5rD8RwfxU32Y2WvWOsFluCI8eaw/EcH8VN9mPHmsPxHB/FTfZjZa9Y6wWcv+Wpx8t8COHMciaUk1Bjc/HaxU91lxIEpSPi2j3asb+fmRZF9X7n9PTM+R7x8ucfuHs2RfpR+nMZilhx1aw+6ljwx7I/vioiRs5Ub5nt3Vyp05eux4xaHzXGnhxmtH5mjhGVMjFytnZYlV8EiKjmSN3j72uRF+lN09Z7+FOkc5wh4e4TSOGoYXwHGQJEkj7MyOlf3vkd9773OVV/l2Gy16x1gs7GCI8eaw/EcH8VN9mPHmsPxHB/FTfZjZa9Y6wWW4Ijx5rD8RwfxU32Y8eaw/EcH8VN9mNlr1jrBZbgiPHmsPxHB/FTfZjx5rD8RwfxU32Y2WvWOsFluCI8eaw/EcH8VN9mPHmsPxHB/FTfZjZa9Y6wWW4JXGarvw3q1TOUq9Xwp/ZV7VOd0sTpNlXkejmtVirsvKvVFVNt0VWotUc+Jh1Yc2qLWAAeaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPdErvh7Sr3rlMjv8AT+GzHQjnmh/3mtfpTI/32Y78D1dXjH3XuUAAPRAAwaucx93K3sZXuwT5Ci2N9qtHIjpIEkRVj50Tq3mRrlTfvRAM4AAAAABqdL6qxes8SmSw9lbdLtpa/arG+Pz4pHRyJs9EXo9jk322XbdN06m2IABqdT6qxejsY3IZeytSm6eGskiRPk++SyNjjbs1FXq5zU322TfddkA2wBgszmPlzU2IZdgflIYG2ZKbZEWVkTnOa17m96NVWuRFXv5V9hRnAAADBgzmPtZe3iobsEuSqRRzWKjJEWSFkiuSNzm96I7kftv38qmcBoNZLy08Wqd/jjH9fz2ok/8AU6Ec91n/AJli/wBMY7+9xHQjz7R6ujxn7L3AAOBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnmh/3mtfpTI/32Y6Gc80P+81r9KZH++zHfgerq8Y+69ygOA6DxGQ4yar1zmsvq/UWLXBalsYehicNkXVK9eGvycrpI29JXS7q9Vk5k5XIiImx345/qPgHoPVeppdQZLApJlp+z8Imgtz122eT0Fmjje1ku2yInOjuiIncamLo4HxD1nqGLVN/W+lLmpGYbFarq4a1PkNQKlKZ3hcdaxBDjkjVro93Ob2jnNejkVybohY6T0zXx/yj+MmeitZmxcxdbG3IqLMrYSGd0lWdVY+FH8j2oqbMa5FRnzUQ6DnPk4cOtR5HJXshpxJ58jMtqw1tywyNZ123nZG2RGRzdP3ViNf3+d1U3uU4U6XzGtqerrONcmoqrGRsuwWpoVe1iq5jZGMejZURVXbnR225nLI+deD9Pi3rzF6L17UyqP8AGliC9kJp9VyzVJqrn/f4G47wRI4nNbzNbyv5muam73dd8DT+Z1DqrWenmO1FqufX0WtJI9Q6eZYsR4ynjIppHN8xu0TY0ibXc12+8iv2XnRyon0NhOAegtOaqbqLGYBtLJsnfaj7K1OleOZ6K18jK/P2THKjnIqtYi9VOVx/J21fDxEZlMdYxGmMe3Nrk338Rmsqs0sKzrK+FaUki1kWRFVr1TdvnOVGp3GcswJWXUmpE4NT8ZX6uzbdTszzmNwSXV8WpC3JeCeArV9FVWNPT27TmXfmOh8OtOXdd8TOKdnLap1GtHFah8DoY6plp68Fdq0oHP6Mcm6Ksm6NXzWqiuREVVVbt/APQUmr/undp2Jct4Z4w3WeXwfwr8Y8H5+y7X19pyc2/XffqVGC0jidNXs1cxtTwaxmbfh15/aPf20/Zsj59nKqN82NibN2Tp3bqpqKZ7x8t4yVbPyccFmMnqXWWQ1L4yyWGw9ShqW3XnydlcjYjrxyva/d/K1ibvcq8rGOXuQy8zhteaf1DoThPWz+Uz1hMDYzOSyFnU9jHWclaSZjHMbbSKaXkj51VIm8u7Vaqr5qovYsv8mrh5nKOGp2sNaSvh5bU9BtbL3YFgksSOkncixzNVVc57uqquyLsmydDIt/J50Ff09QwtrD2LNTH2H2qk02Ttvt15Hps9Y7Ky9s1FRE3RH7dE6EyyPfwTw2s8BpKxR1tbiuXY70vgT23nXZW1F5VjZLOsUSyPaqvTmViKqI3fddzQfKbluY/RuCyePyuSxdurqLFRo7H3ZK6SsluRRSMlRjkSRite5OV26dSiXRGd0jisfh+H1zA4DC1WP3rZXG2Lz1e56vc5HpajXqrlVebmVVVV3PZFofLarxc2P4g2cNn6rbNa5VjxFGxQ7OWGTtGueq2ZFds9saoiKieaqKjkXpq26w4FrCzqCTSnHfV8OsNRVMlpHOTrh68GRkbUgbFWrTcjoU82Rjle5FY/maieijVVVWwwWk6mY+VznsrJfy8E6aZxWRbBBlbEcLnLNYarHRtejXRpyIvZqit5lcu27lVetWuFWlruF1ViZsXz4/VE8ljLw+ESp4TI+Nkb13R27N2RsTZitTpv3qp689wk0pqTUeHz9/FudmcSxkVS5Bamge2Nr0e1j+ze3tGI5OblfzJvv06qTLI+bOG68X+K+Ax2vsTe8GyFzIum3sarmbShiZZVj6r8alRY02Y1zN+fn5vO59+h7tU5HUFbQXGDXUWr9RR5XSuqrUeLqsyUiU44Y5IHLC6H0ZGOSRzdn82ybcvLsd8i4BaCr6wdqeHANgy7raX3OhtTsgdZ7+2WBHpEsm/Xn5N9+u+5srnCTSd/TmpMDPiu0xOorcl7KV/CZU8Imk5ed3Mj+Zu/I3o1UTp0TvJlkcu0joupY+VtxFyL8hmGT1sbh7UcEeVsMgkV6Wmq18SP5XsTlTZjkVrVVVREVV3+gCSznCnS+o9Y47VV7GudqDHtYyC7BamgcrGP52skSN7WytR26o16OTqvTqVpuIsNBrP/MsX+mMd/e4joRz3Wf+ZYv9MY7+9xHQjPaPV0eM/Ze4ABwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADS2NZ4KtZqVnZaq6xbtOpQxRyI9z5mpu6PZu+ytTqu/d69jHravfkXVFo4HL2IJrclWWaaulVK7Wd8z2zuY9Y1Xo1WNcq7oqJy+cBRAnak+qbqYyWapi8SnbyeHV1mktu7FFVI+zejY0R69FXdFRvcnN3n6x+n8ox9CbI6itW5qz53SR1oIoILCP6MR7eVzvvaejs9N1Xd3N02DfqqNRVVdkTvVTRprnAPsU4IcrXtzXIpZ67Kju3WZkf7o5vJvuiKm35+nf0PTjuH2CxyYly1H5Czi2TR1LmUsSXbMaS79r99mc56q5FVFVV7vN7uhvadKvjqsVapBFVrRN5Y4YWIxjE9iInREA0VXV0+TbSfQ0/lpYLVWSy2xbibUbE5voxSslc2Vj3r3J2a7J6XL03l+G8tmfS6yXK7Ktt9++6aCOTtGxvW5NzNR+ycyIu6b7Jv7EOlkPPictpq3bbQxzsxjrE8lmNkMzI5oXvcr3sVJHNa5qvVVRUVNubZU81FXt7PMZaqJm0zad+7hfzWOFm1BpPG2f9zcn8VT+3HjbP+5uT+Kp/bnV6P3o+KnzWzdg0njbP+5uT+Kp/bjxtn/c3J/FU/tx6P3o+KnzLN2DSeNs/7m5P4qn9uPG2f9zcn8VT+3Ho/ej4qfMs3YNJ42z/ALm5P4qn9uPG2f8Ac3J/FU/tx6P3o+KnzLN2DSeNs/7m5P4qn9uPG2f9zcn8VT+3Ho/ej4qfMs3YNJ42z/ubk/iqf248bZ/3NyfxVP7cej96Pip8yzdg0njbP+5uT+Kp/bjxtn/c3J/FU/tx6P3o+KnzLN2DSeNs/wC5uT+Kp/bjxtn/AHNyfxVP7cej96Pip8yzdg0njbP+5uT+Kp/bjxtn/c3J/FU/tx6P3o+KnzLMLiMtxuBqrj2wPvpk6Hg7bLlbEsnhUXKj1aiqjd9t1RFXb1FRe1Bm8Y3JSyaZmyENaGKSBMXbifNacvSRjWSrGjeTqvV3nInTr5pq6mJyuo71N+Rx7sPQqTMsrFLMySaaRqo5ife3K1rUd1Xqqrsibestzl7RVFqaIm8xf528knhZOZHX+HwrctJlH2sXWxbIZLNu7TlirI2XZGqyZW8j9lXZ3K5eRfS23Tfc1srSuW7VSvcgntVFaliCOVrnwq5vM1HtRd27tXdN+9OplGnzejsFqSpdrZTEUr8F3s/CWTwNd23Zu5o1cu3VWL1avqXqmxxI3AJ65ouCefIWKuTy2NtXpoZ5Za9572tWPoiRxyK+ONrk6ORjU5u9d16n5tYzU1dlx9DOVJ5JbbZYY8lR5mQwfPhasT2Kq+tr3c23rRwFGCesZbUNKSdX6fhvQ+Gsig8X32rItZ3pTSNlbG1rmr3sa5+6dUXfzU/MuuaVJJ3X6eTxzI76Y9r5qMj2yvd6MjVjRydkv+2uyIvRdl6AUYNZjtTYjLvtMo5WlcfVtOoztr2GPWKw1N3QvRF816J1Vq9dvUbMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXZnUON09SsWsjciqw14lmkVy7uRiKib8qdV6qidE6qqJ3msvalyk8WSjweAmu3K8UL678lL4FUsuk2VWpJyve3kb1cvZLt3Juu6IFIfiaaOvG6SV7Yo2973rsifymhyGFzmWdloH6gXF0pnw+BPxVVjbVdjdllR8k3aMfzrum6RtVre5ebZyfubQuDtz3ZbtFMmtuzHbfHkpH2o2Sx/ubo45Fc2Ll70RiNTfd3eqqB+LGvMMx9iOtYkys1a6zH2IcXA+2+Cd3XlkSNF7PZOrldsjU71TdDw/Magtve2lp9lZIsi2u9+VusjSWqnp2IkhSVV9jWP7NV73K310KJt3HkCdTDagtvRbeom1Wx5NbMbcVRZH2lRPQrTLMsvMq975Gdmq9zUZ3qj0HiXOjdbZZyr4si7KQuyNqSx2M69yxo9yoxrU9FrURre9E3VVKIAY1HHVMXCsNOrDUiV7pFjgjRjVcq7uXZPWq9VUyQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwMngMZm0rpkcbUvpXsR24fCoGydlOz0JW8yLs9vqcnVPUprPuEx8P+ZT5DG82V8by+C3ZGpNMvpteiqqLG71xps3frsi9SiAE63DagqOZ4PqJlpjsktmVMnQZIqVHd9aJYli5Vb82R6PXbo5H94iyWpaywNt4Wpa7W+6F0mPu9IqvzJntka3zvU5jVdt3oru5KIATsGtqyuqsu4/KYyazdfRijs0nuRz29zlfHzsYxyei5zkRe7v6GfhtT4fUddJ8VlaWShWSSHnqWGSp2ka7SM81V85q9HJ3ovRdjZmBfwOMylqnZuY6pbs0pe3qzTwNe+CTbl52OVN2u26bpsu3QDPBO0dDUcT4tbjbWRx9ejNLMlaK498Uvaek2RHq7du/VETbl9Wwx+M1HjnYuJ+brZWtG+bw6W7SRliZq7rDyOjc1jFauyO3YvMndyqnUKIE5jM5n2phYMvpvsrdzt0uTYu6yzUoqzdWcz5EhkekiJ05IlVHLs5ETzjzjdfYXItxjX2JcbZyMUstenla8lOw5sS7SfepWtcnL393VvnJu1UUCiB64LEVqFk0MjJoXojmSRuRzXIvcqKneh7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADS3tTRtuzUMbEmWydeWuy1Vhma1azJVXaSRVXoiNa52ybuXZNk85D1V9MyWrFe1mri5K1VtS2arYUdBDCjujGrGjlSRWt+c/fzlc5EbuiND1wa1rZltZ2AhdnoLVaWeDIVXt8BVWKrUa6fqnnORUTkR69FVU26n5bhM1moP8ALGT8BisY5a1nH4h7mpHO527pY7OzZejfNaqIzvV226t5aOONsUbWMajGNRGta1NkRE7kRD9AazG6axeIsraq0YY7roI60lxyc9iWKNNmNfK7d70TdfSVeqqveqmzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH5exsjVa5Ec1ybKipuiofoAT8eg8HVkpPpUUxa0oZoKzMc91aONknV6dnGqMXqvMm6Ls7qmy9T1wYPOYt1dtTPrerQUXQdhlK7XyTTpurJXTM5VT1I5OVd0TdNl3VaQATjNRZTGwq7M4OZjIMb4ZZt4p3hkXbNVeeCONESeR23nN2i87qnpbIuxxWo8ZmnpHTuRS2OwisurKvJPHHIm7HPids9m6IvpIncqepTZGtzWnMfqCpZguwK5LEXYPmhkdDMjN+ZEbKxUezZURUVrkVFTdOoGyBPzLlcDas2nTOy+Mlmga2uqRxSUI+Xklk7RzkSRiKjZFR2zkTtFRXryRm+ilZNGySN7ZI3ojmvau6ORe5UUD9AAAAAAAAAAAAAAAAAAAAAAAAAAAAABobuRlzlm1i8VZi7OPnrZC7Xst7ejIsaOa1jeVyLLs9jtn7IiOa7Z26Ivu1RkpaGObDV8IbeuyJTrTQVVsJBI9F2le3dE5GbK526omzdt91RFzsbRTG0YaySPncxvnzSNaj5Xd7nuRqNbzOXdy7IibqvRAP1Row46uyGBqoxrWt5nuV73bNRqK5zlVzl2aibuVVXbqpkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGYz+M0/A2fKZCrjoXO5WvtTNjRzvYm6puv0Gl8qmjvejE/GR/tPanBxK4vTTMx4LaZVIJbyqaO96MT8ZH+0eVTR3vRifjI/2mtmxuSekrlnR79Y660xoutEmpdQYfBstte2FMveirNn2ROZG9o5ObbmTfbu3T2mp4Q6209qzR2LrYXLYG7ax9CrHdo4HJx3oqL1j2SPnY5fNRWPa1V9JGKvtOPfLFwGjOPHBLLYmrqHES5+gnjDFOS3HzLOxF3jTr89qubt3bq1V7iQ+QBpPTPBHhFNdzmbxtDVGo5W2rtae0xskETOZsMTmqvRyI57l9nabL3DZsbknpJlnR9kAlvKpo73oxPxkf7R5VNHe9GJ+Mj/aNmxuSekmWdFSCW8qmjvejE/GR/tNthtTYjUSSLispTyPZ7dolWdsis36puiL03+kzVg4tEXqpmI8EtMNmADxQAAAAAAAAAAAAAAAAAAAAATzGPv68ke5uWgixtBGMcr+ShZdO/d2zU6vljSu3zl6NSdUTq521CTulof8q6osurZGu6fJJ/n0nNG9GV4WI6BvzYl5V6et/aL6yiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCxjkyWpNQXZ0SSxXuLShc7r2UTY41VrfZu5Vcu22+6b78qG6NHpz99NUfpaT+yiN4fXxN0xHsj6LPEAB5oAAAAABodVOTHtx2ViTs7ta9WibK1POWOWeOOSNfa1zXL0XdN0a7bdqG+J/XP7xw/pGh/e4T1wt+JTGstU8YdDAB8dkAAAAAAAAAAAAAAAAAAAAATujIOxbm18GyFZZMpYftkJOdZOqJzxeyJdvNQoic0XB2Eea/BsjW5srZftkZOdX7u9OL2RL81PUhRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Fi9WqSwRz2IoZJ3ckTJHo1ZHbb7NRe9foQD3gnqnEHTeRfjm0c1TyKZCeWtVfRkSwySSL90bzM3RFbsqLuqbL07zxQ1rBlVxbqeKzMkF+WWPtp8dJWSv2e+7pWzIx7WuVNmryrzd6dOoGi05++mqP0tJ/ZRG8JbQd6xkl1DZtY6xiZ5MrKrqdp8b5IvvcaIjljc9m+2y+a5e8qT6+J/d+0fSFni5ZX4yZPL8YcxonEaYjuVsJJWZkr8+VjgmY2aNJElirKxVkjajkRXczeqKiIuxAZX5bOnsdkrlhlfEz6ap3nUZbS6jqsyTuWXsnzR49fPdGjt1TdyOc1OZG7Km9PxI4T6t19xNwOUZHpnHYvDZOreq5yDt25pkEeyzVejeRzJV52ru9G8rurHKm56eH/CvXfDCy3TuIfpXI6HZk5LUFrIsn8Y160syyyQcjW8j3Ir3o2RXptum7V22Of9SPdrj5Rs3DviFUwWbwOPr4m1fgoxW26gruvuSZzWMn8B251iRzkRV5uZE3Xl2NtR4x5nMcTNV6ZoaUhXF6Yt1osjnLeUSGNIpa8cyvZGkTlc9qPduxVRNmovOnNsnOdTfJ01vcr6sxuMl0o+rldRpqSPL3+38Pmc2wyeOrJsxUY1qsRiSI5+zE2SNN906vpThpaxmruJ1/JyVpsbqy3BLDFA9yyNibSirvR+7URFVzHKmyr0VO5egjMMDhvxb1JxLmx2VpaFdU0Rkud9TNWspG2y+JEcrJnVeTdrH7Jt56u2ciqiIc0+T5xy1NU4e8MY9V4C5YxWoJExcOqLWVbZsTW3dq5iyxKiuRj+zc1Hq9V6Ju1N0L/hJoziVw4qYPSdu3pnJaOw7PBYcinhDcjNVY1WwsdFy9m17fMRXI9UVGr5qKu6afA8CM/i+E/CbTEtzGuv6SzVTJXpGSyLFJHEsquSJVZurl7RuyORqdF6oTfuHdyf1z+8cP6Rof3uEoCf1z+8cP6Rof3uE6sH1lPjDVPGHQwAfHZAAAAAAAAAAAAAAAAAAAAAE5ouDsI81+DZGtzZWy/bIyc6v3d6cXsiX5qepCjJzRcHYR5r8GyNbmytl+2Rk51fu704vZEvzU9SFGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1GU1fgcJHJJkc1jqDI546z3WbTI0bK9do413VPPcvRG96+oDbgnLOvsRAl1IvDr0lO2ylPHRx89hzJXdybMYvRPW70W+tUPNrVGQTw1tPTGTtyVrTK7ed8ELJmu9KViukTdjfXuiKvqRQKIE7YuapmdZbWxmLrtZcYyGWzekf2tb58itbEnK/1NZuqL3q5O4S43U1lZEdnKNRqZFs0XguOVXLTT/UPV8rkWRy98jUaiJ0RnrAogTrtJWLDnra1HmLCeMkyEbWyRQJExPRrJ2UbVdD7UernL63KnQeT/Byb+EVpr6eNPHLfD7k1ns7XzXx9o93I1vzY27Mb81qAbK7qHFYxYEuZOnUWey2lEk87GdpO70Ym7r1evqanVfYa1vEDBS7eDXJL/8AlNcO5aFaWykdpPSY/s2u5Eb857tmt9aobCjprEYtZlpYqlUWe0+9L2FdjO0sP9OZ2ydZHet69V9amyAnWaumsJEtXTuZstdkVoSK6GODsmp6VlUmkYroU9rOZy/Nap5iympbMkXJgadaLw98My28kqPSqndPG1kT0c9y90blbsnVXb9ChAE7Xq6rmWq6xkMTVRlx7544Kckva1vmRtc6VvJJ61fyuT1I1O8VtM5Pem65qjI2H17b7LmwxQQsnYvowvRI1Xkb6tlRy+tV7iiAE7U0Jja60XSzZK9LSsyW4ZLmRnlVJH9+6K/ZzU+a1UVrfUiHvxmiNPYWOqyhg8fUSrLJYg7KsxFikkXeR7V23RzvWqdV9ZuwB+WsaxqNaiNanRERNkQ/QAEBpz99NUfpaT+yiN4aTHI3Falz1Kw5Ip7Vxbldrl27aJ0caK5vt5XIrVRN9uirtzJvuz6+JvmJ9kfRZ4gAPNAAAAAAJ/XP7xw/pGh/e4SgNDqjkyS4/EQuSS9Yu1pkhavnNiinjkkkVPU1rW967Iqq1u+7kPXC3YlM6S1Txh0EAHx2QAAAAAAAAAAAAAAAAAAAABOaLg7CPNfg2Rrc2Vsv2yMnOr93enF7Il+anqQoyc0XB2Eea/BsjW5srZftkZOdX7u9OL2RL81PUhRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1WbUNKvJYsTRwQRtVz5ZXI1rUTvVVXoiAe0E9d4gadoOvMfl6009Gqy7YrVHLYnjhf6D+zj5nqjvm7J19W5+bes1Y26lHBZnKzV60dlkUNVIfCOfujjfO6NnOidVRzk5fWqL0AowTtzKalk8Ysx+CqMfHBG+nLkMh2bJpXemx6RserEZ7U33XonTqfm/Q1VejykcGXx2MbLHClGWOi6aSB6bLMr+aRGvReqNRGt5e9ebuApATmS0jYy3jiOxqTMR1r/YdlBVkir+ApHtzdjIyNJPvi9XK97vY3lQZPh9gM2mZbk6K5SDMLCt2renknrv7Lbs0bE9ysjRFRFVGNajl6ruvUDNzWrsFpunet5bNY/F1KKMdanuWmRMro9eVivc5URvMqoib969xh5HXmJx65ZieG3Z8W+GO1XoY+ezK10u3IiNjYqu6Kiqrd0anV2ydTbQYbH1b1y7DRrQ3LisdZsRwtbJOrE2Yr3Im7uVOib9ydxmATt/U+QiXKR0dM5K9NSkijj3fBDHa59uZ0bnyJ5rE9LdEX1NRwvWtVy+M46OPxNfs5Ym0bFq5JIk8a/urpI2xp2ap3NRHO5vWrSiAE7exOpLvjNjNQVaEUs0TqT6mO3mrxJ+6NkdJI9sjnLvs5GMRqepV6i7o52SXJNtZ7NPguTxTMihstreCoz/VxPhax6NcvV3M5yr3b7dCiAE7c4faeyS3/AA/GR5Jl6xHanhvvdZidJH6CoyRVa1G7bojURN+u25t6mJo0JrEtanXry2ZO2mfFE1rpX7bczlROq7dN16mWAAAAAAAAAAAAAAAAAAAAAADBy2Dx2erpXydCrkYEdzJFahbK1F9qI5F6mk8lmjPdLCfq+L6pUg9acbEoi1NUxHit5jglvJZoz3Swn6vi+qPJZoz3Swn6vi+qVIN7Rjc89ZXNOqW8lmjPdLCfq+L6o8lmjPdLCfq+L6pUgbRjc89ZM06ue6d4S6UozZWlLorHtrRW3y1rduGGx4Q2X767l3RXMax73sRju5rG8vm7Im58lmjPdLCfq+L6p7cpRSlrXD5WDGQzS2opMdbvus9m+GLZZY05FXaRFkarennN5906cxSDaMbnnrJmnVLeSzRnulhP1fF9U3GH05itPMkZi8ZTxrJNudKkDYkdt0TflRN9jYgzVjYlcWqqmY8UvMgAPFAAAAAAAAAAAAAAAAAAAAABOaLg7CPNfg2Rrc2Vsv2yMnOr93enF7Il+anqQoye0bEsUeZ3rZCtzZSw7bIP5lf53px+yJfmp7ChAAAAAAAAAAAAAAAAAAAAAAAPTPbgquhbNNHC6Z/ZxpI5Gq9+yryt3712RV2T2KaKnq2bMSYt+Kwt6zjrrJnvv2meCMr8m6NR8cu0y87k81WxqnL5yrsreYKME5RpamuNx82SyVLHuSCVtypjYFlR0rl8xzJpOuzE9Sx+cvVdk808QaDx6pVdkLF/MzwU30XSZC297Z43786yQtVsTnO325uTfbomydAM7I6twuIsuq3MrUgttqyXfBXTN7ZYI/TkSNF5la3uVUTv6GF928NlGeLsVlsp2uMXJwOhqLEyZvzIUkmVjGyu9THubtvu7lTqbXF4PHYOpXq43H1cfWrQtrwQ1YWxMiib6LGtaiI1qepE6IZwE74z1Jc5kr4OrRjkxfbxyX7u8kd1e6vJHG1ycjfnSNkXr0aju88PxepbrZUmztWgyXHthRKFHeSC2vpzskle5rmp81jo+nequ7ijAE5Lopl1kzMhmcxebPQZQmb4YtZH7elMnYJHySu9bmcvsajU6HtboPTvhMtmTDU7FmaoyhLPZiSaSSu3q2Jzn7q5u6Iuyr1XqvU3wA/McTIWNZGxrGNRERrU2REToiH6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzX9btdNS2m0KmRnx8sV+GK9N2MbXxPR/P2nc1Woiqir09vTcokXdN06oYmZx0OYw96hYrxW4LUEkEkFhN45GuarVa5PW1UXZfoUxNIWpr2k8LYsxV69mWlC+WGnMk0Mb1YnM1j09JqLuiO9aJuBtwAAAAAAAAAAAAAAAAAAAAAAAAABOaLg7CPNfg2Rrc2Vsv2yMnOr93enF7Il+anqQoyc0XB2Eea/BsjW5srZftkZOdX7u9OL2RL81PUhRgAAAAAAAAAAAAAAAAAAAAOZfKO1lrLh5wizep9DUsbksxiWJblqZOGSVklZu/a8qRyMVHNb5+++2zXJtuqAU+l69TPwx56xUuOtOsTS1m5iu1k9JP3JzIk23ja5I9+/dyOVVXqUx8j/IG478SuOmIzdrVNbGJprGKtevfjin8Ks2nv7RWrI+VzVYxi7bIiL5zOvRd/rgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO8P6zqOkaNVadCgldZIG1sZJz142skc1qNX8yJunqXdPUUROaDreB4SzClWhSRuTyCpFjZe0i2W3M5HKvqkcio57fU9z09QFGAAAAAAAAAAAAAAAAAAAAAAAAAAJzRcHYR5r8GyNbmytl+2Rk51fu704vZEvzU9SFGTmi4OwjzX4Nka3NlbL9sjJzq/d3pxeyJfmp6kKMAAAAAAAAAQ8+Uy2pblxaWSkwuOrTyVY3V4Y3zTPY5WPeqyNc1rUeio1Eb15d1XzuVtwc80R+9F39LZP+/Tnb2eIy1VzF5i0a8b+Sxwu9vifO++mY+Ho/wCGHifO++mY+Ho/4Y3YOrP7sfDHkt2k8T5330zHw9H/AAw8T5330zHw9H/DG7Az+7Hwx5F2k8T5330zHw9H/DDxPnffTMfD0f8ADG7Az+7Hwx5F2k8T5330zHw9H/DH4mwOZsQvil1jlpYpGq17H1aCtci9FRUWt1Q3wGf3Y+GPIugeH3CKHhZpmHT+ldQZTEYiF75WVo4ab/Oe5XOVXOgVyqqr61XpsnciFH4nzvvpmPh6P+GN2Bn92PhjyLtJ4nzvvpmPh6P+GHifO++mY+Ho/wCGN2Bn92PhjyLtJ4nzvvpmPh6P+GHifO++mY+Ho/4Y3YGf3Y+GPIu0nifO++mY+Ho/4YeJ8776Zj4ej/hjdgZ/dj4Y8i7TNr6jxre3r6isZWVm7kq5KCu2OX/d5oomOYq9UR3XZV3VrkTlWvwmWhz2Ho5Kuj2wW4GTsbImzkRzUVEcnqVN9lT2mpPTws/0c6c/4GL/ALTxx4irDz2iJiY4REcb6eBxhUgA+cyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO6IgbWo5NjalCmi5W4/kx8vaNerp3OV7/ZI5VVz2+pyqUROaKh7CDMJ4Pja3NlbT9sa/mR+79+aT2Sr3uT1KBRgAAAAAAAAAAAAAAAAAAAAAAAAACd0XB2Eea/BsjW58rZftkZOdX7u9OP2RL81PUhRE7ouDsI81+DZGtz5Wy/bIyc6v3d6cfsiX5qepCiAAAAAAAAAHPNEfvRd/S2T/v050M55oj96Lv6Wyf8AfpzvwPV1eMfde5QGlxOsMVm9Q53CU7Cy5HCOhZej7NzUidLGkjE3VNnbsVF6b7b+3obo+ceHektG435THF65LjcTW1FHZpWMfK9jG2ESej9/fFv1896ycyp3qrtzUzayPo4Hxxw/0/pTQXyN9P6kn03WzOWzePp42xZu2Xw9ok9ljI2TWEXmjrscrFVqdOVm23VSVyNV2i9DfKM0rUyOFdSp4DH3o6WnFlZTqTv7ZJOzY+WRWOVGRc2ypuvKuybmc4+8Sb4g68x/DfTTs5k4bM9RtqtUVlRrXSc887IGLs5zU2R0jVXr3Iu269Dg+ptAYbRvFWfBYG+uisdqLQeVXJ5GKdzUZLHJAjLsjnO6yMSWRVkcvMqKu7vWc5uWcLpbg5rXSkeIxGLyWn8jpu1ksrgbrrGOvxPvwqyzu5d4n7Mer2u69y8zk6omqw+4jTO1him6yj0t4Qvjt9B2TSv2btkrtkbGrubbb0nIm2+/efIvym7WL1hk+JWWoxaexGQ0fjK74s9kLc7shYmfAk8HgKMmY2JPOa1H7O53bpyqiFvPgtIZz5Tuks5qahiJbN3RUeRr3LzI0SS7HZhVsjHO6LI1qptt1RPoGbePpwHw7h9F3OKdrVeUy+ttLaZ1tFqOzRS5kq1jxvi5G2VbVjgk8NjajFZ2fI1I+VyO2VHqqqv3BGjmxsR7kc9ETmcibIq+tdjUTcfoHyzqjH6W1dxm4sM4gW4XXcDRqP05Vv3HQMrVnVed9iunM3d6z86OkTq1WNTdPXifJ7ydXD6v4aWMhahpQz8J6iRy2ZEY16ssMc/ZVXqqI5FX2Iu5nNvH1iD4I09LJrDT3C3AWMrhamjsrY1JaifnoZZ8bettycqxMkbHPDzKkbnuYjnK1VVfNVdlS0k4W1oLfCvT97UtDVWn72sr0sMWFWSOpVibj5kkpsV08ruz7SORHMV+2z3t226DPfuH2GD5W4utX5PGpb9fRuNZj6mvcMzB4upSj5Y4MzG9IazkRE2ajop1Vf8Ahj6Q0XparofR+E07R3WniqUNGJV71bGxGIq/Su25qJvNhuT08LP9HOnP+Bi/7T3Hp4Wf6OdOf8DF/wBoxfUz4x9JXuVIAPnIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO6MrrXjzKLUx9Tnyll6Jj38ySbu9OT2Sr85PUpRE7oyr4LHmU8BpUe0ylmTalL2iS7u/dH+yR3e5vqAogAAAAAAAAAAAAAAAAAAAAAAAAABO6Lg7CPNfg2Rrc+Vsv2yMnOr93enH7Il+anqQoid0XB2Eea/BsjW58rZftkZOdX7u9OP2RL81PUhRAAAAAAAAADnmiP3ou/pbJ/36c6Gc90U1W4q6i7bplslvsu/wD77Op34Hq6vGPuvc35p72jdP5PO1c3cweNt5mo3kr5GepG+xC3r0ZIqczU6r0RfWpuAeiNUzSmEi06mn2YfHswKReDpi21WJVSP/Y7Lbl5fo22NdFww0bBRfSi0lgo6T6q0XV2Y2FI3V1dzrCreXZWK7zuXu367blMCWGtv6axGUtpau4qlbspXkqJNPXY96QP2V8XMqb8juVu7e5eVN06GFiuH+l8FhreIxum8Rj8Tb38IoVaEUUE26bLzxtajXbp06ob8ATk/DfSVm5TtzaWwstqnXSpWnfj4XPggROVImOVu7WbKqcqdNumx7Mhw+0tl6OLpXtNYi7TxSNShXsUIpI6aNREakTVaqR7IiInLtsiJ7DfgWgaC9w/0vk9QQ565pvEW85Dt2WTnoRPss27uWVW8yberZTQXOHmp7NueaLijqOpFI9z2QRUcWrI0Vd0aiupq5UTu6qq9OqqXwFhH57hbgdW4itBqHH0NR5WrVWCHMZbHV5rDHq3btE2Y1Gu387ZiNTfuRDC0twb0/iuHmkdLZ3HY3VSacpQVa9rI4+N/nxsa3tGMfz9mq8qL0VdvapegWgaC1w/0vd0/wCIbGm8RYwfaOm8WS0InVudzle53ZK3l3VznOVdt1Vyr3qe+po3T9CHGQ1cFja0WLe6ShHFUja2o5zVa50SIn3tVa5yKrdujlT1m4AsIbUXDSXVnELA57KZhZ8Ngn+GUMGyqxrUu8j4+3klVVc7ZkjuViI1EXqqr02uQAB6eFn+jnTn/Axf9p7j08Lk24c6b+mjEqKi7oqcqbKTF9TPjH0le5UgA+cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5ouqlWPNIlGnR7TK2ZNqc3aJLu790f/svd3q31FGTui6ngkWY/yfVx/aZSzJtUm7RJt3/ur/8AZe7vVvqAogAAAAAAAAAAAAAAAAAAAAAAAAABO6Lg7CPNfg2Rrc+Vsv2yMnOr93enH7Il+anqQoid0XB2Eea/BsjW58rZftkZOdX7u9OP2RL81PUhRAAAAAAAAACVyWk78N2xawd+vTSy9ZZqtyu6aJZFTq9nK9qsVeiuTqiqm+yK5yrVA9cPEqw5vSsTZEeINYflPB/ATfbDxBrD8p4P4Cb7Ytwe+1YmkdIW6I8Qaw/KeD+Am+2HiDWH5TwfwE32xbgbViaR0guiPEGsPyng/gJvth4g1h+U8H8BN9sW4G1YmkdILojxBrD8p4P4Cb7YeINYflPB/ATfbFuBtWJpHSC7lOg72r9caWqZptrC022HzM7F1OZyt5JXx9/ap38m/wDKb/xBrD8p4P4Cb7Y9HCF3ivG5nTE7Fiu4PJ2WKx3+srzSunryt9rVjkRu/dzxyJ3tXa+G1YmkdILojxBrD8p4P4Cb7YeINYflPB/ATfbFuBtWJpHSC6I8Qaw/KeD+Am+2HiDWH5TwfwE32xbgbViaR0guiPEGsPyng/gJvth4g1h+U8H8BN9sW4G1YmkdILotmldRXkWHI5mjFUf0k8XVJI5nN9aNe6VeTdN03RFXr0VFTcr6lWGjVhrV42xQQsSOONqbI1qJsiJ+ZEPaDxxMWvE3VeSXAAeKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATuiqbqdbLc2Pq45Zcpbl5akvaJKiyLtK5fU93e5vqXoURO6Io+AY7IJ4BVxyy5S9MsdSdZWyc1iRe1cvqe/o5zfmuVU9QFEAAAAAAAAAAAAAAAAAAAAAAAAAAJ3RcHYR5r8GyNbnytl+2Rk51fu704/ZEvzU9SFETui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIAAAAAAAAAAAAAAAAAAAAAAmdV6SmytmDL4e03GajpsVle29rnwysVd1hnjRydpGq/Tu1fOaqLvvrsXxRqw5GLEapqrpPOSP7OGK5JzVLjvV4NZ2Rku/qYvLLt1WNpbmJlcTRzuOsY/JUq+RoWG8k1W3E2WKRvsc1yKip9CgZYOeJwnsadYq6K1NkNNN3RW461vkccm2/mpDK7njb/uwyRp07jz91HEDTyvTL6Pq6irN7rWmL7WzOTfvWtZWNG+3Zsz16dN12RQ6EDnrePGjaro483kJ9JTv6dnqapLjW777bJJM1sb13/2HuRS5oZGplarbNK1Dcrv9GavIj2L+ZU6AZIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATugaLaGnntbjq+L7W/esugq2O3Yrpbcsiyc/+1Ir1kcnzXPVqdxQucjGq5yo1qJuqquyIhP8AD7HeKtFYauuPrYqTwZsslKnOs8MMj/Pe1si9XpzOXzvX3gUIAAAAAAAAAAAAAAAAAAAAAAAAAAndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IURO6Lg7CPNfg2Rrc+Vsv2yMnOr93enH7Il+anqQogAAAAAAAAAAAAAAAAAAAAAAAAAAA/MkbZWOY9qPY5FRzXJuip7FIfIcDdB37kl1mmaeNyEm/Pfw/Nj7LvpWaurHqv079C6AHPG8Kspikd4i4hamx7dtm178sOSiTr61sRulX2fuqd548F4q4hq9nf0lqdqL5rbFWzinqnsc9r7CKv0oxPzHRABzxeIGscW1PG3DTIz9VR0mn8nUuRt+naZ8D1T8zFX6AvHXTVRqeN62e087dUVctgbkMTfzzdksX8zzoYAlMBxZ0Tqt6R4bV+Cyku/L2VTIwyPRfYrUdui/QqFWabUGi9Pasj7POYLGZlm23LkKcc6bfmeikp/wDp/wBCQIiY3DS6dROrU07kLOLRv5krSRp/J3AdEBzxeE+SosRMPxF1bjUaqqjJ5619q/Q5bMEj1T8zkX6Tx9z/ABPxqfgustP5aNP9XlMBJHK7/wD1hstan9UoHRAc8TPcTscxfCtIaeyyIqbPxmekjkcnXf73LWRqer/WL3r3bdfCcVstSRfG3DbVlBGp1lrsqXmL/wCVILD3r/KxF+gDogOd+X7RkHTI28lgVTv8eYW7j2p/880LW7fSi7G8wHFLRmq3I3C6uwWXcvRG0clDMv8AM1ygVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrnnZWgkmkVUjjar3KiKqoiJuvROqgaXXEj/uYu1oY6M9i63wOKDIz9lDM6TzORyp1XdFXonVdtk6m4qVIaFSGtXibDXhY2OONibNY1E2RET2IiHz3w5+WFww436swGPoZvHY6wiSyeKdSQur5Bl3tGQ12wOXeBznNkl6Mke9eZqInp7fRQAAAAAAAAAAAAAAAAAAAAAAAAAAATui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADR57Qum9Uo5M1p7FZdHJsvh9KOfdPZ5zVN4AOeR/J/0DTka/G4FMC5iorfENufGom3sSvIxP5D8+R+xS/ejiBrLE7dyOyEV9P5fDIplX+ff6TooA547SvEig5Voa+xl5m+6MzenkkcqezmgnhRPz8q/mPC5Lirjl8/A6Szkad74MvZoyfyMdXlRfzK9PznRABzt3ErU2PXbJcMNQK1ETmnxdujbjT+RbDJF/kjC8ddOVF2ylLUeDd61yOnbzIk/PMkSxf/WdEAETieN3D3OT9hR1vp+ez66yZKFJk/PGrkcn8qFnDPHZibLFI2WNybtexUVFT6FQw8tgcZnoOxyeOqZGH/w7cDZW/wAzkUjZvk/cOXyulr6OxeLncu7p8RD4BIq+1XwKx2/07gdBBzx/BirXVFxWrNYYZURERI87NbamybdG21mb/wAg7Q+u6C743iVLa2RNkz+ErWUX8/g/gyr/AMgOhg565/FbHyrtDo7Pxc3T77bxjtv6NnqeG681tQRy5LhndscqbquCy9Syi9fV2766r7e71e3ZAOhg54vGzG02ouW03q7DLuqL22nrVlrfzvrMlaide9V2+k9tTj3w6tWG13azw9K05N21shabUmXpv+5y8ru76AL4GJjctRzNdJ8fdr3oF7pa0rZG/wA6KqGWAPRevV8bUmtWpmV68LVfJLIuzWonrU9GazmN03jZcjl8hVxePhVqSW7szYYmK5yNbu9yoibuciJuvVVRPWT3EOXnqYFiOR0M2Vr82y9HIiOe3/6mNX+Q9sKj0lcUysReR3EVHLvBpzO2Il9GRK8cfMnt5ZJGuT+VEU8eUST3Wz39Cv8AbGaDty4XJ85LxowvKJJ7rZ7+hX+2HlEk91s9/Qr/AGxmgZcLk+c+a3jRheUST3Wz39Cv9sPKJJ7rZ7+hX+2M0DLhcnznzLxowvKJJ7rZ7+hX+2HlEk91s9/Qr/bGaBlwuT5z5l40YXlEk91s9/Qr/bHheIcioqLpXOqi+rs6/wBsZwGXC5PnPmXjR8YfJe+SPU4R63yGs9ZabyOdzUNyR+FqwMhfXpM5lVk7uaROabbu6bM23RVdsrfsLyiSe62e/oV/tjNAy4XJ858y8aMLyiSe62e/oV/th5RJPdbPf0K/2xmgZcLk+c+ZeNGF5RJPdbPf0K/2w8oknutnv6Ff7YzQMuFyfOfMvGjC8oknutnv6Ff7YJxEdv5+mM6xvrcsULtv5ElVf5kM0DLhcnzkvGjcYrK1c1RjuU5e1gfvsqtVrmqi7K1zXIitcioqK1URUVFRURTLI3RL1bqTVcKdI+3ry8v+86BqKv8AM1v8xZHFjURh1zTHs+cXSYsAA8UAAAAAAAAAAAAAE7ouDsI81+DZGtz5Wy/bIyc6v3d6cfsiX5qepCiJ3RlfwePM/g2Qrc+Usv2yEnOr93enH7Il+anqQogAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAem1UgvQOhswx2IXdHRytRzV/OinuAENk+BfDvLz+EWdEYBbSdEtRY+KKdPzSNajk/kUw/IXgavXF5XVGEd6kpakvLE380Mkr40/oHRQB8p/LC4VaytcANQ4nCaq1brKzkZKteDBSY2taWVUsRvXeSCsySNrWsc5Xvdtu1G77uRFh/kw8NeOnDTF4DH8QrtVmkEyEXgWKt2UsXa0nI/l5HN3Rse3NuxXdF22ROp9yEhxG9DTv6Xi/s5Dq7L66n/e5qnizADkvyrslmcP8nrW97BZDxZfr0HP8JbzpI1nTm7NzHNVr1Tuduu3sU6Jm0XZdaBxPVOuuI+k8lw403E7TWUzupbVyCxcWnYgrQxxV3Ste1nbOdu1GqqorvP22RWb7po+M/HHWHCfkjZk9I5LIUcQmRvYqPHZCS1Zc3mWRWpCr0qxLy7MkmVyb77qiIqmc0QPogHDrHFbXOr9cXMLoyDT9WpHpqhqCKfNQzyyK6wsydirY5GpsvZt8/dOXZfNfzJyzcvyltSZ1nDybFxae0tQ1PhGZFMjqdJ3VZrivRq0Y5Y3NRj06uRz9+ZFTZqruM0D6VB812sXk858rHO39SyYXI6f0nhauRqQS05nS1GPdZc2SH77yNn54kV8isXdrWtajdlVdjp7jnrh2O0NrDOYrBQaK1hkK1KrSqLN4wottKqVZZZHO7OTmXkRzWtby8/RV2UZh9Bg+c8fxs4i3OFGt9fy19NV8bgW5hlWmlaw+W0+rLKyN7ndsiMb5mzm7Kq8qqjm7oiZ8fEXixY1/iNLNTRsM2bwsmbrWnVrb20mRvja6F7e1TtlVZo0R6LH3OXl7kVmgd9BEcFtf2eJ3DXEaiu1IqN6d08FmCByujbNDPJBJyKvXlV0TlTfrsqGt4tcRM5prM6T0vpWlRtan1NYnZXmyqv8EqwwR9pNLIjFRz1RFaiMRU3V3emxbxa46SD53g4761xeo5sDmamAkvVNY4vTc89GGdIpILNXt3SNR0m7X9WoiLuidU87vNlxF+UVd4eah4g0psdXuxYWDCx4qGOOVZZ7V6SaPaTk51c1qxtdsxnNsjkRHKqITNA7sD5orfKN1nRwmtZL2IrX5MTpq5nKWWi0/lMbTbPA3dK0zLbWq5Xbo5FY9N0a7o1dipbxM19pqlojP6pi0+3T+fv1adyvj686TY1LMapC50zpVa9O2WJjl5ETz+nduM0DtwIbhlrq/r6/rCy+GvFgsdmZcVjJI2u7SdIGtZPI9yuVFTt+1a3lROjPX3lyajeNfor+FerP4yt/YlmRmiv4V6s/jK39iWZ4dq9b+1P/AJhqriAA5GQAAAAAAAAAAAABO6Lg7CPNfg2Rrc+Vsv2yMnOr93enH7Il+anqQoid0XB2Eea/BsjW58rZftkZOdX7u9OP2RL81PUhRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJDiN6Gnf0vF/ZyFeSHEb0NO/peL+zkOrsvrqf8Ae5qnizCd4i6Jp8SdC57S1+WSCplqclSSWHbnj5k2Ryb9N0XZevsKIHQy5bjOEeoJs7obMak1hDnb+l7NuVskOJSqlmOar4OjFRJXcqtVVeruvNvts3vMDWvATIak1JrC7i9XvwWN1hRio5uo3HR2JpGxxOiRYZnOTst43KiorH+tU2VdzsIJlgc04e8HptE6jXMWM23JzO05j9PuYyn2KL4Ksq9t+6O9LtfR9XL3rv0jrnyaM7Pwlw/DmHXscOmYMS3E5CGTBRyutIjlVZonOk3hfsqIm/OicqKib9TvgGWBC4ThXXw+vc3qFbq2quTw1LDrQli3VrK6zec6Tm8/mSbZU5U25e9d+kVp75N97GSaWxWR1pPltE6Vusv4jBux7I5mPi38HbNZR6rK2LfzURjd1a3dV2O3gWgcqg4F9hwR1Pw98d83jrxn/lLwT9x8Mmll/c+fzuTtdvSTm5d+m+ybyHhj2XEXTuqvGW/ijBT4XwTsP3XtJIH9rz83m7djty7Lvzd/TrcgWgcl0hUyXAzS9LSdPTGoNbRRS27i5TFR0oYt7Fuafs1bNbY7mb2iJuiKipsu/VUT86o0llOMbcLmqkGa4aap03cfNjbuTgq2udskasmY6KKd7XxvauyormuRWoqdx1wC3cPmbTfBXUmpc9xIhzmZsVs3BqfF5rF6k8VdlBPPBTh2eyBXcr4086JUR/qXd2+5TWvkzWNSza3tao1fNk8jqWPGrHboUG01xs9J8j4ZYE539OaRq8rlVejt3LzdO5gmWByyxwr1fqLQWsNOaq19Hm1zuKlxkE8GEjqsqc8b2OlVjZFWRy86Kqc7U81Nkbupj8dcLIzgPd0nWw+T1JkL9JuJosxdfdzLSRqsM8iqqNhYySNrle5dmqid6qm/WwWwleFeiW8OOHWn9NpJ28tCoxliffftp186aRfpfI57v/mKoAvAa/RX8K9Wfxlb+xLMjNFfwr1Z/GVv7Eszw7V639qf/MNVcQAHIyAAAAAAAAAAAAAJ3RcHYR5r8GyNbnytl+2Rk51fu704/ZEvzU9SFETui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPa2w9nK4ytJTYk1qjajuMh5kb2vLujmIq9EVWudtvsm+26onVKEG6K5w6oqjuWJs527XeIiXlmdcryJ6UU1Cdj2r7FRWHj7v8H+Mz/BzfUOig7dowuSev8A8m5zr7v8H+Mz/BzfUH3f4P8AGZ/g5vqHRQNowuSesfibnOvu/wAH+Mz/AAc31B93+D/GZ/g5vqHRQNowuSesfibnOvu/wf4zP8HN9Qfd/g/xmf4Ob6h0UDaMLknrH4m5zpeIGDRFVbMyInr8Dm+oeurxJ07drRWK9589eZiSRyxVZnMe1U3RyKjNlRU67odCu/5nP/Fu/wChFcA0a3gVw5RqqrU03jURV27vBY/YNowuSesfibmN93+D/GZ/g5vqD7v8H+Mz/BzfUOigbRhck9Y/E3Odfd/g/wAZn+Dm+oPu/wAH+Mz/AAc31DooG0YXJPWPxNznX3f4P8Zn+Dm+oPu/wf4zP8HN9Q6KBtGFyT1j8Tc5193+D/GZ/g5vqHluvcK9dmTWZHL3NZRnc5fzIjN1OiAbRhck9Y/E3JfRWMsxSZXK2oXVX5KZj468nR8cTI0a3nT1OXZztvUioi9UVEqADjxK5xKs0kzcAB5oAAAAAAAAAAAAAJ3RcHYR5r8GyNbnytl+2Rk51fu704/ZEvzU9SFETui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0Xf8zn/i3f8AQjOA23kN4d7IjU+5zHbIiou34NH606L/ACdCzu/5nP8Axbv+hF8BXI7gZw6Vqq5q6cxyorl3VU8Gj712Tf8AmQC7AAAAAAAAAAAAAAAAAAAAAAAAAAAAATui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHou/5nP8Axbv+hFcAtvITw4222+5vG7cu+3+ax92/X+ctbv8Amc/8W7/oRXAREbwL4conRE03jkTzkd/7rH606L+cC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAATui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc67CPW9zJWMksk1Svcmp16jZXsia2Jyxuc5qKnM5zkcu677Jyom3VVeT3T35Mj/AKb/ANp37NRG6uqYnwv94atEcXRQc68nunvyZH/Tf+0eT3T35Mj/AKb/ANpdnwueekfkm50UHOvJ7p78mR/03/tHk909+TI/6b/2jZ8LnnpH5G50UHOvJ7p78mR/03/tHk909+TI/wCm/wDaNnwueekfkbnRQc68nunvyZH/AE3/ALR5PdPfkyP+m/8AaNnwueekfkbkD8t/SWrc7wSyGY0TqHNYHO4Dmvq3D5CaqtquiffmPSNzUds1OdN99uVUT0lI/wD9nDp/WMHBqfUmrNQ5fLQZl8bMTSyd2SeOpUgRzGrE17lRiPVzk2aiebGz6DtruHenXIqLi41Reior3df+Z+YOG2masMcMOIhhhjajWRxq5rWonciIi9EGz4XPPSPyNzpAOdeT3T35Mj/pv/aPJ7p78mR/03/tGz4XPPSPyNzooOdeT3T35Mj/AKb/ANo8nunvyZH/AE3/ALRs+Fzz0j8jc6KDnXk909+TI/6b/wBo8nunvyZH/Tf+0bPhc89I/I3Oig515PdPfkyP+m/9o8nunvyZH/Tf+0bPhc89I/I3Oig515PdPfkyP+m/9p6MjQr6EpPzGISSr4M5jp6/bPdDNFzoj2qxVVOblVVa5E3RUTvTdFR2aiqctFU3n2f5lbRPB0wAHz2QAAAAAAAAAAAABO6Lg7CPNfg2Rrc+Vsv2yMnOr93enH7Il+anqQoid0XB2Eea/BsjW58rZftkZOdX7u9OP2RL81PUhRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABz3Rv8AmuW/TGQ/vUhvzQaN/wA1y36YyH96kN+fYxvWVNVcZARD+NGj261s6RZk5p9RVbEVWxRrULEqwPkYx7FkcyNWsYrXt89yozqqb7oqJjY7j5oLLanjwFXUMUuRlsOqQuWCZteedu+8UdhWJFI/dFTla9V3RU2PG8MugA5Bw2+Upp/XlPWFqxBexMGnbF5ZpJ8dbSNalZ2yzK90LUR6pu5YU3kb3bLsp69U/KS0yujX5bTWZhc59qnWgyGSw+Qdj3rPJsidpHD13a2RqOReVr+RHKm+yzNA7GCC1fx10NoTNyYnN55tS9CxslhrK00zKrXei6eSNjmQoqdUWRW9OvcbavxM0zZXUqR5aNU05G2bKOcx7W143Q9s2TdW7PYsfnI5m6LsvXdFQt4FODnWa+ULoDT8OOkvZ10aXqUeSjYyhZkfHWem7JZmNjV0DVTfrKje5fYpe4/IVctQrXqViK3TsxtmhsQvR7JGOTdrmuToqKioqKgvEjIBK684o6Y4ZxUXaiyiUn35FiqV4oJbE9hyJu7kiia57kRNlVUbsm6b7bkBoL5SeEyfD2TVWpshUpVbGdvYvGpRrTySW44p3si5IWo+R71jajncrfauyJ0JeOA7SCJ8tWiPuGXWK6iqt06kqwLbcj0ck3Ny9j2ap2nac3Ts+Xm39R+MHxt0bqLxWlLKTK/J334yrFYoWYJHWWwrM6NzJI2qxezart3IibbdeqFvAuQROe40aL0vNmY8rnGUXYe3Wo3llgl5YJrDGyQtVyN2Xma5q7oqom+yqik+/wCVHwzibb7TUE8L6buW5DLirjJaibIvPPGsKOijVHJtI9GtX1KS8DqwIrWXGfRugp6cGZzKMsXIfCYYadaa5IsP/iq2Fj1bH/vqiN+kxctx50JhkxXa59tlcrTXIUGY+tNcdbgRURXxNhY5X7bpuibqibqqbIqpbwL8HH9cfKX01pWpoHIUe2zmI1XddBHdoVbE6RQtje5z0ZFE5zno5rWdl0d1cu3mO2psjxv0XitSY/AWcu9mYvMryR1W0rD3RpOvLD2ytjVIVevREkVq/QS8C6JziJ/ArLfxX/3IUZOcRP4FZb+K/wDuQ6MD1tHjH1ap4w6MAD4zIAAAAAAAAAAAAAntGxLFHmd6uQq82UsO2yD+ZZN3enH7I1+ansKEndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc90b/muW/TGQ/vUhvzQaN/zXLfpjIf3qQ359jG9ZU1Vxlx3QmlMinEXjjM6rZxnji7UZSyMkLmNlamNhZzxuVE50Y/mTdFXZUVO85VwV4dY2HHaN0fqzSPESPP4OeHtnS5C+/BRT1l547Mblm7BWK5jVa1iKqK7blREVT63Bz5WXzRjoMxiNHcctFWNM53xnkrOfydC1FjpJKluKzG58SRzNRWrIvNy9n6W6bbG84laWydj5JuEwlDEW5cjDXwDFx1es90zOytVFkTs0TdORrHKvTojV37lO9gZR8l5HRKaZ17xGqar05xEzdbUOVfkcfY0jdvJSuV5YY2LBMyCZkbHs5FYqy7IreXrsiFLxU4GZBdS6WxWkqr4dKZ3HV9Lajaj3OWGhVck0T1cqqqq6JlivzOVf3dvXfY+jwMsD5X1Ro9+keMmu7+ewWv8niM/wCCWMVZ0RcusiVI67YX1p460rEY5FZu1z05Va5fOTbY+i9C6axujtHYbC4inNjsZSqsir1LEivkhYidGOcqqqqnd3r+c3pGag4LaB1Xl7GVzWi8FlcnY5e2uXMfFLLJs1GpzOc1VXZERPzIgiLcBB8Q3ZHQ3ygMJrebTuX1Fp+bT0uF58LTdcmx9hbDZed0TfO5JG+armouysRF2RTl+hcNqDSmY0rr2/pDUE2Np53U6WcbHjnyX6jLtlHwWG103c9FRitVWc3R6Km6H1VprSuG0bimYzA4qnhscxzntq0YWwxo5V3VUa1ETdTajKPkVNHaqZkIuJTtJZSXEt15LqFdLJAnh/gjqSVW2uwVd+2R6dr2fpbL7S84gaou6xl0DrKhpHVLMdprUqyXKlnEyR3X1305olnjrfuj2NfM1FTl5ujlRqom69+Ayj5Gy+I1Bq/Vurc1DpPPU6l7XulbldlzHSMkfWgbXbJPy7LsxvIquVfQTo/lVFRLvO6Xy1jVPyiJW4i5JDltN0q9F6Vnq25I2naa5kS7ffHIrmoqN3VFcies78BlHx5jtE5DR+qaWY1Pg9fW8Xl9K4avXl0fZvRTU7FaBWS1rMNaRj03V/Mjnps1Vem6KqnR+H/D+LSfGHRDsJp/K4nTVfRd9qJkEkldVnnvVp1hllc56drusi8qvX0Xbboh3wCKbD5Px+mtQaZ4faEysmmsxZj09xAyeRt46rSe+22nLNeY2WOHbme379G7zUXdrt03Q3+vchkI+I+M1JoXAa0xuq8omNZdbJiXeKsjTWROZltXdIZYY3yedux7V83zkXp9IgZQJziJ/ArLfxX/ANyFGTnET+BWW/iv/uQ6cD1tHjH1ap4w6MAD4zIAAAAAAAAAAAAAndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IURO6Lg7CPNfg2Rrc+Vsv2yMnOr93enH7Il+anqQogAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjXslUxcccly1BUjkkbCx08iMRz3Ls1qKq9VVeiJ3qBkgnk13ip5Wx0ltZN3jJ2KkWjVkmbBO30+0cjdmNb63KqIi9N9+h4hzOfvOhWHTraMSX3QT+M7zGP8ABm/6+JsKSo5XL6LHOYu3VytVOVQogTlbE6jstpPyGehgkhtvmljxVJrI54fmQvWVZF6fOe3lVfVyn7p6Ix9eXGz2Jr2St4+WaavYu25JHNdLvzbpujVREXZqKmzU7tuoGVPq3CV8jjsfJlqbb2SWZKdbt2rJY7FN5uRu+7uTpzbd26b96GFQ1n44bi5cdhMvYqX45pEtWKvgaV+TdGpNHOrJWq9U2aiRr7V2b1NviMNj9P46HH4ujWxtCFFSKrThbFFHuqqvK1qIidVVentMwDmnD6S2/GZFuQrNo5FMnafZqMl7VIXvlWVG8+ycycsjVRdk3RUX1lQe7NaPpZq14X21uhcVqMdYozrE57U32Rydztt123Rdt12Nb5OWe8Od+KZ9Q+pOLhYk5pm0z7GptO9mAw/Jyz3hzvxTPqDycs94c78Uz6hM+FzfKS0aswGH5OWe8Od+KZ9QeTlnvDnfimfUGfC5vlJaNWYDD8nLPeHO/FM+oPJyz3hzvxTPqDPhc3yktGrMBh+TlnvDnfimfUHk5Z7w534pn1Bnwub5SWjVmAwJeHbGRPd90ecbs1V5lstXb/6DU6M0YzN6PwWR+7HMZfwuhBY8YQOSCO1zxtd2rY3NVWI7fmRqqqoi7eoZ8Lm+Ulo1UoMPycs94c78Uz6h8McV/lY6j4C/KQ1Fo7UMmRzula8sLoFp2EhuxRyRMemzlarX7cy9Fair7UGfC5vlJaNX3mDS4HR8eeweOybctqeg27WjspVvyNhsQ87UdySxqzdj032c1e5UVDO8nLPeHO/FM+oM+FzfKS0aswGH5OWe8Od+KZ9QeTlnvDnfimfUGfC5vlJaNWYDD8nLPeHO/FM+oPJyz3hzvxTPqDPhc3yktGrMJ3iC1ZNI34W9ZJ+zgjb63PfI1rWp9KuVE/lNt5OWe8Od+KZ9QzcToeli7sdyS1eyVmLfsn3rCyJEqpsqtYmzUdsqpzbb7Kqb7Ku+qcbCw6oriq9vYRaJuogAfKZAAAAAAAAAAAAAE7ouDsI81+DZGtz5Wy/bIyc6v3d6cfsiX5qepCiJ3RcHYR5r8GyNbnytl+2Rk51fu704/ZEvzU9SFEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGyOSqYehYvX7UNKlWjdLPZsyJHHExqbuc5yqiNRE6qq9wGSCcsa2glZcbicdkM7Zgqx242VIOSKw2T0Gx2JeSFzlTqqI/zU2Vdt038Xm6rycWRhqvxmC5oofArkiPuyNevWbtIfvbU2TdrdpHbr5y9PNUKQ1ma1PiNOV1nymTqY+LtI4eaxM1m8ki7RsTdernL0RO9fUYGQ0XDmX5RuSyeTuU7/YfgTbS146/Zddo1hRj9nu6vRznc3o+j5ptKGCxuLtXbVPH1alm7Kk1qaCFrH2JEbyo97kTdy8qIm67rsmwGrsawVy22Y7CZbKzVbjKcrGVvBm7r6UjX2FjbJGxOqujV3sajndBYdqu94UyBmJw6MuMbBPKsl1Zqqem50adl2ci9UaiOeidHLv6JRACdn0lPkFtNv5/KzwyXWWoYq0qVEgY3uhR0KNe5ir1dzOVXd2+3QyaujsJTnszx4uqs1i54fLJJGj3OsbbJJu7fZyJ0RU7k6JsbkAAAAAAAAAAAAAAAAAAAAAAH4mdyQyO5uTZqrzbb7fTsaTQOSTM6E05kEy6agS3ja0/jZK3g3hvNE13b9l/q+ffm5Pm823qN3M7lhkdzcmzVXm2326d+xouHuRTL6B01fTLOz6WsZWnTLOreDrd5omu7dYunZ8+/NyfN5tvUBQHOL/yfNDZTipa4i3MLBd1XJUgrQ27bGzsqOhcrmTwseitbNvyJz96JE3l5d383RwBptOZd9yObH3J2T5nGpFDffFWfXikkdG13aRNeq/e3b9NnPRFRzFcrmO23JodTtnpPp5mszJW5KLlY/H0JWo2xHI5rXq5juj1YiJIm2zvNVEXzla7fAAAAAAAAAAAAAAAAAAAAAAAAATui4OwjzX4Nka3PlbL9sjJzq/d3px+yJfmp6kKIndFwdhHmvwbI1ufK2X7ZGTnV+7vTj9kS/NT1IUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXX87Vx9+nRck01y52nYxQQvk35Gczle5E5Y022TmerUVXNbvu5EXH1jlLGG0xkbVO1jqV5sXJWny73MqsmcqNjWRW9VbzOb0RUVe5FTfdMzF4ipho52VIUi7eeSzKu6uV8j3K5zlVVVe9dkT1IiImyIiIGnr19R5uOGW7PDp+vNSkZNRqIk9mGdyqjXtsL5nmN283s1TmX0lRPOyqGjMTQvQ31qpcykdFmOXI3F7Ww+BqovK569V3ciOd/tKiKu+yG7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH4mdywyO5uTZqrzbb7fSaTQORXMaE05fXLJn1tY2tP42bX8HS7zRNd26RbJ2fPvzcu3Tm29Ru5ncsMi83Js1V5tt9unfsaPh/kPG2gtN3vGrM74TjK03jWOv4O25zRNXtki/1aP35uT5u+3qA34AA9VqrFeqzVp2JLBMxY5GO7nNVNlT+Y0+h69ilpXH07WPlxb6bFqMrz20tP7OJyxxvWVPS52Na/dfO87Z3Xc3pO6RxrsVa1HCmITF135R88MqWu2S6kkUT3z8vfFvI6RnIvrjV3c5AKIAAAAAAAAAAAAAAAAAAAAAAAE7ouDsI81+DZGtz5Wy/bIyc6v3d6cfsiX5qepCiJ3RcHYR5r8GyNbnytl+2Rk51fu704/ZEvzU9SFEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPag1NPRutxuMqx3cmsaTPbNIscUMaqqNc9yNcvnK1yIiIu/K7uRDUrmtY79K2D2/jpvqnTT2euqL7o8ZWy3BEeOtY/i2D/rpvqjx1rH8Wwf9dN9U3stesdVstwRHjrWP4tg/wCum+qPHWsfxbB/1031RstesdSy3BEeOtY/i2D/AK6b6o8dax/FsH/XTfVGy16x1LOG/LS+VdkPk82MTiX8Pqmp8VmIGzRZHIXNoEmjmRXxLD2S8ytakbkdzpsr0XbzevXfk7cXclxz4YUtY5DTP3KsvyyeCVFu+FLJA1URJVd2bNt3I9ETbuai79ekP8oLg7lPlE6FbprOR4io2K1HbguV5JVkhe1dlRN29zmq5qp9KL6kL7At1JpnCUMRjcfga2PowMrV4WzTbMjY1GtT0fYiDZa9Y6lnRgRHjrWP4tg/66b6o8dax/FsH/XTfVGy16x1LLcER461j+LYP+um+qPHWsfxbB/1031RstesdSy3BEeOtY/i2D/rpvqjx1rH8Wwf9dN9UbLXrHUstwRUeb1e1yK+lhJGp3sbZmYq/wAvIu38ylFp/OxagoLOyN8Esb1hnryenDInpMXboveioqdFRUVOinnXgV4cZp4eyUs2YAOdAAAAAAAAAAAAAAAAAAAAAB+JncsMi83Js1V5tt9unfsaPh/kPG2gtN3vGrM74TjK03jWOv4O25zRNXtki/1aP35uT5u+3qN5M7lhkXm5NmqvNtvt9JpNBX0yuhdOXUyrc6lnG1pvGrIOwbc5omr2yR7JyI/fm5dk2329QG+AAAnMBivANV6psNw60WXpa87r/hXaJdekDY1Xs/8AV8iRsb/vbblGTuJxja2t9Q3G4ZavhVamjsr4TzpcVvbJ2fZb+Z2aKnXbzu1/3QKIAAAAAAAAAAAAAAAAAAAAAAAE7ouDsI81+DZGtz5Wy/bIyc6v3d6cfsiX5qepCiJ3RcHYR5r8GyNbnytl+2Rk51fu704/ZEvzU9SFEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCNXfiHqL6KlJP7Y3Bp2f6Q9Rf8LS//ADG4PrV93hT9IaniAAwyAAAAAAAAAAAAAANPb1diaOqcdpye3yZnIVprdat2b17SKJWJI7mROVNlkZ0VUVd+m+ym4IBg6AX/ACtrJPUmWj/uVUzjB0B+++s/0tH/AHGqan1dfh94ajhKxAB8tkAAAAAAAAAAAAAAAAAAAAAfid3LDIvMjdmqvMqb7dO80XD69400Fpq54xhzHhGMrTeMa8HYRWuaJq9qyP5jXb8yN9SLt6jezO5YXrzcmzVXmVN9vpNJoK9400Lpy6uUjzi2cbWm8Zwwdgy5zRNXtmx/MR+/MjfVvt6gN8AABOY7G9hr7O3vEy1/CMfRj8b+FcyW+R9lex7LfzOy5+bm+f26J8woydx+O7LiBnL3ih8CT42jD42W1zNs8kltexSHfzFi7TmV/wA/t0T5gFEAAAAAAAAAAAAAAAAAAAAAAACc0XB2Eea/BsjW58rZftkZOdZN3enF7Il+anqQoyd0XD2EeZ/BsjW5spZftkZOdX7u9OL2RL81PUhRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQjP9Ieov+Fpf/mNwadn+kPUX/C0v/zG4PrV93hT9Iaq4uBceJ8jqnXFfS2m59SePqeIdlJ/FmoVw9KtC+RzI5ZXtje6WRXRvRrOVW7NXm26Ehw+z2e4y57hZXzOps3RrZTQU2UyEeHvvpeFWWWK8aSOWPZWr57l3YrV9W/KqtXvWs+D+kOIGXq5TPYhLt6vCtZJmWJYe0hV3MsMqRvakse+68j0c3qvTqp+tLcI9J6Ku4y3hcSlGfG0p8dTVLEr2w1ppkmkja1z1TlWRrVTp5qIjW7N6Hhlm7L51jta81Jwt0tmZctqPNYLT1/NUs7Hgcn4HlrcUFl8Vewj929ssbIl5o+ZFeqovnL0MnWHEbNYzMJitKZ/KZKvxP09QTSd+5NI5allFbDYmanTs1SvNHZdsiedG5dt1O1Zb5O/D/N4yrj7eDkdUrT27ETIsjaiVHWpO0sIrmSormvd1Viqre5Ntk2KuLRGBglwEkWKrROwEbosX2bOVKbHR9krY0Toicnm7ewZZHytkOO2ssppbWWrq0lmnf0FpjxXfpbuSuudkm5LEro/RkSFsKPbzIqIky+1Sy0fo/ifpvJR5aXJyfc5JjLbsitvV82ZfZcsCuhmga+rEkLkejfQcjeVy+b0Q71W0bg6kWcijxdZIc5M+xkonM5mWpHRticr2r0XdjGoqdy7deqrvM6P4D6G0FPZmweFdUfYqvou57tiZscDlRXRRpJI5ImKrW9GcqdE9gyyJz5LuBuLwn0nqbLaizmoMzmMLVmsSZTIyzRJzMRycsSryNciKiK/bmdtu5VVVKXjjhNVah4c36ejbslLNLLC/wC82fBZZoWytWWGOfZeye9iOaj9uiqnd3pnzaTymmNJYfA6Cs4rBVMbEyrFHlqc95jYGM5WsbtPG7dNk85znd38pprPD7UOtqc+J4gZDAZzT8qNf4LiMdbx86TMe10b0m8Meqcqpv0RF32XdNuttusOFZXiHls5S0JojR9vUUUuSy+UpZeHUOdfUyUFipEyRaS3mxzORF7RHo5m7nNYiI9N1KDIQ610Noe3gtWXMzYlzucrUdM08HqV82RR7o3PkhmyEkETmxfenv51ar0aqpuqoh1uTgFoCbRrNLP05C/DMtrfaxZ5e3Syq7rOk/P2va/7/PzbdN9j2LwJ0O7R6aYdhVdiEuJkER1yws7bKd0yWO07VJNk25kfvt032M5ZHznd1TrnE8IOJmn7WfyWNzOC1ViKNK8mVdetVYrE1JyxraVjHTInavTz27qjlau6IdH1TgbkHFDR/DOvqzUuNwWRpX81cvLl5XX70sSwsbXjsOVXxsTndIrY1anTpyoX9P5P2gcfjcnQr4BIqmTmqWbkbbc/3+atIkkMrl591ej0RXP737Jzq5EN3rzhlpnibTqVtSYtt9tSXt60zJpIJ679tldHLG5r2KqdF5XJv6y5ZHFdY8NGTcb+Gmmvun1K2vFgs09+Qbk3Jflb21VUjdYROfZN0TdFR2zERXL13v8A5OWbyeV0Nk6WWyNjMWcJnsnhWX7juaeeKvafHG6R3zn8qNRV9e269Sj07wj0npS5iLeLxS1rOJgs16ci2ZpFjZYe2SffmevOr3sa5XO3XfuXqu+40zpHE6Or3oMRU8Eiu3p8jYb2j389iZ6ySv8AOVduZyquybInqRELEWm43Bg6A/ffWf6Wj/uNUzjB0B+++s/0tH/cap6T6uvw+8NRwlYgA+WyAAAAAAAAAAAAAAAAAAAAAPXOrkhkVu/Nyrtsm/Xb2Gj4eTZGzoDTMuX7fxtJjKz7nhNZtaXtliasnPE1VbG7m33YiqjV6J3G9mTeF6bOXzV6N7/5DS6CrrU0Np2BYchXWLG1mLDlpEkuM2ianLO5OjpU7nL63bgb0AACeoY5sWv83fTEyQPnxtGFcqtjmZZRktpUhSLfzFj7RXK7bzu3RN15OlCTtDHdlxBzl7xTJB2+Now+NVs8zLPJLbXsUi+Ysfacyv8AnduifMAogAAAAAAAAAAAAAAAAAAAAAAATmioUhjzW1bJVubK2XKmSdzK/d3pxeyJfmp7CjJzRUSxR5revkq/NlbLtsk/mV+7vSi9kS/NT1IUYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEIz/SHqL/haX/5jcHo1DhL9bLvzOKgZdlmhZXtU3y9mr0YrlY+Ny9OZOdyKi7boqdU5dnaxclqBFVE0hfVPb4XV+1PrRbEiJiY4RG+YjhFu+Wp3t0CSq62yGQtT16Wmbl+WvZWnZSrdqSJXmRiPVkqpLsxUa5q7O2Xzm+1DZ+M9Q+59/wCMq/alye9HxR5lm6BpfGeofc+/8ZV+1HjPUPuff+Mq/ajJ70fFHmWboGl8Z6h9z7/xlX7UeM9Q+59/4yr9qMnvR8UeZZugaXxnqH3Pv/GVftR4z1D7n3/jKv2oye9HxR5lm6BpfGeofc+/8ZV+1HjPUPuff+Mq/ajJ70fFHmWboGl8Z6h9z7/xlX7UeM9Q+59/4yr9qMnvR8UeZZugaN+U1C1qqmjcg5UTflS5U3X6Ospr6Gtb+SvSUYNN2lyMUEdmWi+7UZYiik35HviWVHNRVa5EVU72uTvaqIye9HxR5llYYOgP331n+lo/7jVMRl/UMi8qaTtRr6nS3KyN/l5ZHL/yKLSuClwlKw61K2a/dmW1adHv2aPVrWI1m/Xla1jW7r37b7JvsnniTFGHVEzG/dumJ74nu8DhDdAA+YyAAAAAAAAAAAAAAAAAAAAAPxKnNE9FRVRUVNk7zRcPazKegdNV4qd7HxxYytG2pk3c1qBEiaiRzLuu8je5y796Kb9U3TYneHELa3D3TELamQoNixlaNKuWfz3IkbE1OSd3rkTbZy+tdwKMAACdx2P7LX2dveKJK6z0KMPjRbPM20jH2V7JIvmLH2iqrvndsifMKIncRjuy1tqG8uIfVWeCpEmSdZ5220Ykq8qR/wCr5Feqb/O5/oAogAAAAAAAAAAAAAAAAAAAAAAATujYVhjzO8WUi5spZd/lR/Mrt3d8XshX5qepCiJzRcKQx5raPKx82Vsu/wAqu3V27u+H/wDpX5n0FGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGVzdTDLUbZdLz27DKsLIYXyuc92+26MRVRqI1yq5dmtRqqqoiKprK9LMZx1SzkZX4aBi2GzYqpK2VLDHebEskvIjmqjd3K2NU2c5E53I3dwe7Lapjp2bOPoVpcrmo6jrkdGFFa17UfyIjpnJ2bFV26IjnbqjXqiLyrt6pNP3M26x46ub0Zo4OXGUnOjbE9vnP5pkVr5Uc7ZNtmNVrdlau7t9ticTSwOMrY7HVYqVGtGkUNeBiNZG1O5ERDLA/EcTIWq2NjWNVVcqNTZN1XdV/Oqqq/yn7AAAAAAAAAAAAAAABgZrB1M/Rkq22Scj0RO0gmfDKzZyORWyMVHNXma1d0VOqIZ4An51zuHmkkiRNQV7F9m0KqyvLTruTZ6ovoy8jvO2XldyqvVzkRHbDEZ2lnYpn05XOWGaSvKySN0b2SMXZyK1yIvsVF22VFRUVUVFXYGBfwOPyl6hdtVI5btB731bCptJCrmq13K7vRFauyp3L037kAzwTENrLaTpxsyck2ex1SlLLZy7Y0W457F3RFrQxokiuZ/wCEiKrm7JH5yIlDUtw3qsVivI2WCVjZGPb3Oaqbov8AKioB7gAAAAAAAAAAAAAAAAAAAAAneHcPg+iMLD4PkqqQ12xJDmH89tqN6ffXet3Tff1lETmgIkr6abA2HKQtht24UbmXc1h3LZlbz7+uN23NGvrjcwCjAAAndPY7wfU2qrjsQ/HvsWoGtuOs9ql9ja8e0jWf6pGq58fL61jV3zkKIndH47wKXP2X4d2InvZSWeTntdutrlayJk/fsxHMiZsxO5E69VUCiAAAAAAAAAAAAAAAAAAAAAAABO6MrpXjzO0eUi58pZf/AJUcjldu7vi27oV+ansKIndGRrFHmd4cnDzZSy5PGb+ZXbu9KL2Qr81PUhRAAAAAAAAAAAAAAAAAAAAAAAAAAAANFlb17Iz2sViVfTn8H5/G74WywwPV/LyI1XJzSbI923VG7N5vSRF86ty0mNo1oK16pQyOQsx06j7rHPY567uciNaqK5yRskcibom7eqom5ssbjKeHpR1KFWGnVj3VsMDEYxFVVcq7J61VVVfaqqoHqx2EpYmxfnrQ8k96bwizK57nukfyo1N1VV6I1qIiJ0RE2REM8AAAAAAAAAAAAAAAAAAAAAAAAAAaO/pvluW8liZI8bl7SwJPYWNXsnZG7flezdE3ViuZzp5yIreqo1EN4ANdicv4zdajkqWKFivO+JYLPLzPajlRsrVa5UVj02ci77pvyuRrmuamxNBrCs2vQfm4PAK+TxkT3x3r0CvSKDdjp2bt2cjXtjTfbfq1jla7lRDc07kOQpwWq0rZq88bZYpGLuj2uTdFT6FRQPcAAAAAAAAAAAAAAAAAABO6QYlaXP1WwZOJsOUlVJMk7mbN2jWTK6B3rhRZVYifNVjm/NKInqES0tb5Zra2QWO5Vgsrakl56nO1XxrGxvzH8qMcvqdui96KBQgAATvD/G+K9JUmOw33Pzzulu2MatvwpYJ55XzSosu6o5VkkeqqnTdenTYyNaduuk8syrjm5exLXfCyi614Mk6vTl5Fl+Zvv6SdU9XXY2ONx1bD46rQpxJBUqxMghib3MY1Ea1qb+xERAMkAAAAAAAAAAADR5fXGnsBb8FyOaoUrWyOWCaw1siIvcqt33RDdNFVc2pi8ra7eAlvKnpD3kxvxDR5U9Ie8mN+IaeuzY3JPSVyzoqQS3lT0h7yY34ho8qekPeTG/ENGzY3JPSTLOipBLeVPSHvJjfiGjyp6Q95Mb8Q0bNjck9JMs6Kk1+e1Bi9LYqfKZrJU8RjIOXtbl+dkEMfM5Gt5nuVETdzkRN16qqJ6zTeVPSHvJjfiGkzxLynD3iloLO6TzGoca/H5aq+tIvbtVY1XqyRE39Jrka5Ppag2bG5J6SZZ0eeGHFjQeosjksXhNXY+/krOTtPipSZiCzPPtu5zoGMeq9lyormoidERTpx/PH5AXBrFcJdYar1VrPJY+rlKU0mJxTZJm7OYi/fbLP91ybNa5O9FefcvlT0h7yY34ho2bG5J6SZZ0VIJbyp6Q95Mb8Q0eVPSHvJjfiGjZsbknpJlnRUglvKnpD3kxvxDR5U9Ie8mN+IaNmxuSekmWdFSCW8qekPeTG/ENHlT0h7yY34ho2bG5J6SZZ0VIJZOKWkF/8A5JjU+lbLURP+ZR1LlfIVo7FWeOzXkTmZLC9HscntRU6KYrwsTD310zHjCWmOL3AA8kAAAAAAEzNxN0lBI6N+pMZzNVUVG2mO2VOip0X2n48qekPeTG/ENOjZ8af+E9JXLOipBLeVPSHvJjfiGjyp6Q95Mb8Q0bNjck9JXLOipBLeVPSHvJjfiGjyp6Q95Mb8Q0bNjck9JMs6J/X/ABa0fprU2DxuQ15pfB3auRR16jk7sKT9m6rMrWojnbwuVXRuR7tkVu6b+eiLdYPPYzU+LgyeHyNTLY2ffsrlGds0MmzlavK9qqi7Kiouy96Kh/PT5b/AnFcWONGk9SaVzFGRmdlix2bnZMjm1ORERtl/Xo3s05enrYid7kPtrSWquH+iNL4rT+IzuMrYzGVo6leNLDejGNRE39qrtuq+tVVRs2NyT0kyzo6ACW8qekPeTG/ENHlT0h7yY34ho2bG5J6SZZ0VIJbyp6Q95Mb8Q0eVPSHvJjfiGjZsbknpJlnRUglvKnpD3kxvxDTeYnNY/PVVs429Xv10crFkrStkajk72qqL0VPWnehirBxKIvVTMR4JaYZoAPJAAAAAABocprzTmFtvq3s5Qq2Y9ueGSw1Hs37uZN903+kxPKnpD3kxvxDT3jAxqovFE9JW06KkEt5U9Ie8mN+IaPKnpD3kxvxDS7Njck9JXLOipBLeVPSHvJjfiGjyp6Q95Mb8Q0bNjck9JMs6KkEt5U9Ie8mN+IaPKnpD3kxvxDRs2NyT0kyzoqQS3lT0h7yY34ho8qekPeTG/ENGzY3JPSTLOjzr7XmnNE4tyZ7UuG05LbhlSq/L244WyOa1N1a16pzo3mbuib96e0x+GOvdP6207UZhdUYXU1qnUrpdkw1mORsb3M6KrGKqxo5Wv2a5E7lT1KcJ+WvpnSXHfgpfp4/NY2fUuJVchi0bO3ne9qefEn/nbum3rcjTA+QtpXSvAvgxB41zGPqaozr0v5KOSZqSQpsqRQu6/NaqqqL1Rz3J6hs2NyT0kyzo+tQS3lT0h7yY34ho8qekPeTG/ENGzY3JPSTLOipBLeVPSHvJjfiGjyp6Q95Mb8Q0bNjck9JMs6KkEt5U9Ie8mN+IaPKnpD3kxvxDRs2NyT0kyzoqQS3lT0h7yY34ho8qekPeTG/ENGzY3JPSTLOipBLeVPSHvJjfiGmTjuIGmsvbjq089j7FmRdmQssN53r7Gpvuv8hJ7PjRF5onpKWnRQAA8EAAAJ7UVVYc7gMpDQt3Z4pn0nrWn5GwwzInPI9irs9qOji+lOqp3Ki0JrdSYOtqXB3cZciWavYjVqsbK6Jd+9qo9vnNVFRFRydU23A2QNfp7IWcrg6Fu7TTHXpoWusU2ztnSvLt58faN6P5Xbt3Tv29RsAJzVdJMxkMBj5cbXyNRbzblh09jkWukCLLFKxidZHJOkHTuTfmXuRFoycx9ZmR1tksk+tQf4DXZj61uKZZLDVcqSTxvb3MTpAqJ3rtuvTlKMAAAAAAAAAAAMLNXH4/DX7UeyvgrySt39rWqqf9CS0lVZX09RennTWIWTzyu6ulkc1Fc9yr1VVVSm1V/BjMf8HN/wBik9pn+DmK/wCEi/7EPoYHqp8fs13NkADbIAAAAAAAAAAAAAAAAAABrdMPShrbK0IE7OrNTiurE30UlWSRr3InqVyI3fb1t371U2Rq8J/pJu/omH+2kNccOuPZ94WO9bgA+UgAABJ8RpneLcbS5lSDIX4qs6NVU541RznNXb1O5Nl9qKqesrCP4jd2mv0xF/ZSnV2b11LVPFlxxshjaxjUYxqbNa1NkRPYiH6AOlkAAAAAAAAAAAAADTTOTG620/PB97kyEktKxyp+6sbBJK3m9qtdH0VeqczkTZHLvuTSZb+F2jP0hN/c7B6Uf8o9k/SVhfAA+QgAABotd5SfCaJz2Qqv7OzWozSxP235XoxVRdvXsuy7G9Jbin/o11T+jbH9mp74ERVi0ROsfVY4w/GNx1fE046tZnJEz2ru5yr1VzlXq5yruqqvVVVVXqpkgHbMzM3lAAEAAAAAAAAAAAAAAAAAAAAAAMe/Qr5OpJWtRNmgkTZzHf8AJUX1Ki9UVOqL1QyAImYm8D98P8jPltF4i1ZkWaw+BEkld3vVPNVy/Su2/wDKUBK8Lf4AYb+KX/ucVRx9oiIxq4jWfqs8QAHggAAJvTtVmDz2YxcNKpRpzP8AGVdYbG8k75XOWw50S9W7SbOVU81Vl9u5vMhkK2JoWb12xFUp1onTT2J3oyOKNqKrnOcvREREVVVeiIhodXI3F38Pn08UVkpTOrXL2T3Y+OnMiI9kMiei50zKqqjt2uSPZdl5XN/esZvC24/CsXGSvyc6MmqZSNZWz1W9bCNYnRzuTonN5qK5FXfo1Q92i8dLQ0/A+3Ux9PI23OuXWYzmWB08i8z3Nc7ZXdV9JUTfbuTuTegAAAAAAAAAAABq9VfwYzH/AAc3/YpPaZ/g5iv+Ei/7EKHVX8GMx/wc3/YpPaZ/g5iv+Ei/7EPo4PqZ8fs13NkcT078o2W3xYx+hs9gcfiLuSfPFVWlqCvkJ45Io3SctmBiI6HmYxyou7k3Tbfc7NcgW1UnhbK+B0jHMSWNdnMVU23T6UPnDQ3ye9baXt8NYpfuRioaLvPkdNS7dLOUZJDJDJPI5WbMl2k51Z56Ocq+e1E6yb7rMt/hflKZTIUMLnLeiVo6TyOdXT65NMqySaOfwp9ZknY9mm8SyNRFVXI5FVfNVERV2mnOOWe1ll9YQ4PRUVzH6fs3aHbSZlkdmW1Xa7lY+v2aujZK5uzXbuXZUdy7GqrcCM/DwZw2kXXMauSpapbnJJUlk7FYEyzrnKi8m/P2bkTbZE5um+3UzI+E+rcpx1xWtMjHpnE08XLbTwzC9ul/KVZGOZDXtI5qMVGbtcq8z/OYnKjdyfqGbpz5S2nNRZzh3i2Ruin1jh35SJyybtqORnM2GRdkTmdyWURenWu5NuvSUufLCx7MZg3wYzF1shmmWb1OLOahhxtfxfHYdDFYfNIz0puXmbExr1233dsm56bXyRI26D4h4ijlkq5bN5RchhLyK5PFUbJHSwQNXbdGtfNYRdt/Nmd3lJqHgpmtNaq01qPh6uFfNi8EzTU2J1B2ja81ONyPhcySNrnMkY7m+aqORyp0J+oa7H/KqTUtHRq6b0v46yWoclexDqseUi7KtYrRq96pOxr2SxKic3aN+YvMiOXzTt+Fnv2sTTmylSGhkZImusVa86zxxPVOrWyK1vOiL035U39hzmxw71LmtV8L89k5MLFa07PfnycWPSSOJ6z1nxMSBrkVV2Vzd1cre5VT2G7zHGTTmCylnH2odQOsV3qx61tM5KxHv/uyR13Mcn0tVUNReOI1Oq+LeYg11b0jo3Sf3WZfHVIruTknyLaNeoyVXJEznVj1dI9GPVGo3bZN1chDZLiJrzGcdM9XxGl7OoFbpPG3pcHNmmV69KVZbPaI1VRzXSu2RqK1uzuTq5ERDdLpzVkmuMjxD4bTYuenqenBXyOM1XXt0HtkrLIyKZidl2jfNc5qsexN0RFR3VCl0voHPUuKmW1dl7GOk8Yadx+MkZSWRPwmGSd8rka5OkarKnL5yr0Xf2rN8iSbxefrTW/CC/iaN5uF1JjbmQpvblvB2PmSs5zoLVZInJIjfN5Xo/zXKq7Lt11vCXjrqShwWzutuIdCDxbjbN7s7lG529iy9t6WFtdIUhja3ZUZEx3MvP0VUbupsuHnAnP6Sp8FIrlvGyO0TTvV8isEsipK6aDs2LDuxOZEXv5uXp7TDrcAdUWuHeruHGQyOJi0tcs2r2Hy1VZXX4Z5LvhcXbROajFayRV3Vr/ORE6JupP1cRjcZ+InEJnAvWWSyOlJtDTwVK89O5js62ezzLYiRY15GsWN/Kq77Oc3qqcxc6Z4vZzIauymls7ot+Dz8WJXNY+tHk4rLbsCP7NWK9GtbHIj1Y1UXdvn7o5UJ7WmhOK/E7hpqLTGon6PqTXK0MdabGzWlSSZs8b3Per4/vbVax3moj13VPO2NjxT4L5fiDrHL5GplYcVTv6LvabbO1z+3innnika/lRNlYjWORfOReuyJ60u/jAxOHnyi7OuNXZfSUuCxVbU1bGS5KpXx+o4chXm5HtYsM0sTN4Ho58e6Kx3Ryqm+2xmfJY1vrDiDwlxGY1dVq9tYhSSHIw3O1kubvkRznxJExsO2zURGq5FT2bGq4e8IdYYLiTpjUeSqaSxOOxWEsYJ2MwCzbNY50T2ytc6NvMquiRORUbyoqrzPVdik4C6E1Xwv0wzSeZlw9zBYtHxYu7Rkl8JmjWV7k7eNzEaxUa5E81zt1QRe+8dRNXhP9JN39Ew/wBtIbQ1eE/0k3f0TD/bSHtH9lfh94WO9bgA+UgAABH8Ru7TX6Yi/spSwI/iN3aa/TEX9lKdXZfWx+/0ap4s00ets7e0zpe/k8djY8tbrMR7as1xlSNycyI5zpn+axrUVXKq79GrsirshvDn3HPh3e4naHZisdLT8JgyFTIJUyfN4HdSGZsi15+VFXs38uy7Ivq6KdE8GUDjflZ1bXD7XGfkwdafJaSkrNt0cTmYr1edk7mox0NpjUa5er92q1FRWbLtvum3yXyhL+kZ9UVdWaOlxV7E6fk1JXgoX23fCqzH8j2qqMZ2cjXKxFTzmojt0cqISWa+T5rjUWM4nNtS6XpWdY08ZHDWoPnZBSkqSr5iuWPd7XMVF5+Vq83TkROp0nVOgNR2eK0mscJNieaPStnDV4cksjmrafZilY6RrU6xbRqi7O5uqbJ6zz/UNRX46ZqnprTeezmkalDF5nL1MalujnGXYYobKbR2OdsSIqJKrI1au23PujlROvpyHyn8M3F6/lxePfkslpfLQYaCgs3ZrkZ5nthj5Hcq8rVn7aLdEdt2Ll+hNDgvk45ifQ/FDE5VcJgnasbHJRxGnnyrj8bZjj82wznY1Ue6VI3uRrET72nevU2dX5L1CjqHhZkIbqrHpOFWZFjlXfKSta98Uz/a5tiWWXr65HF/UNXrj5YuI0nn9QU61PD3qenpnV8i61qWrSuySsRFlbVqyedNy7q3qrOZyK1u+xV6f44ZXW3ETK6e01pOPIYvGJjrFjNWsn4Oxa9uFsyOZH2TnOkRrlXk3RF5erm7ohrKHCzXmg9VanXSUmlchp3UGVkzLlz7J0tUJ5tlnaxI2q2ViuRXNRXMVFcqbqVumtHWtFa/4lasuyQvxWZSlPXiqMklnYytV7ORHRtZuqqqea1nMq+zfoIzd46Gcm0Jxj1JxAu6hfQ0QyPEYbJZHFPtzZdrZLM1Z72M7GNYtlR6taiq5zUarl9LlVTcQ8ddLTzMjbBqXme5GpzaTyrU3X2qtbZPzqT+L4L5ePhHxC0hPlYaN3UmQzNmtdpOe5II7c0j4+bdGruiPRHIn0oir3lmb8Bp9LfKro28tqXHakxdDE2cJhbGdkXDZyDLsWvAqJMx6xo1Y5m8zfMVF336L0NtoXjhqHUmvsFp3OaKj01Dm8PNmaVl2WSy98THRJ2asbEiNkRJUVzebZE7nOXoSEHBfVWPyMWbzVDRWPw1DSeQ0/NiMXHZkh7KRjHpIqJG10iK6LldEiNVGquznquxF/JX1FDFxGxGL5qms7SYeSkzO0MxcvLh68fK5IJI560SQtkcjURN1fuxqLuidM3m8XH2MaTLfwu0Z+kJv7nYN2aTLfwu0Z+kJv7nYOmj/l4Vf+ZWF8AD5CAAAEtxT/0a6p/Rtj+zUqSW4p/6NdU/o2x/ZqdHZ/XUeMfVqnjD3H5kc5sbla3nciKqN323X2H6NXqnDyai0zl8VDckx816nNVZbh9OBz2K1Ht+lu+6fmOtlyPRnylJM5r92kM3gcficrJTs2q8eO1BXybmug5VkhsNiaiwSbO3RF5kXZ2yrsNDfKMympmaAyGW0UuC0/rTaHH3kyjLEkdhYHyoySJI02Y5I5Ea9HKq7JzNZvsmg0bwF1rhsxw/ntQ6PxuP0pQt4zwfD9uj7TJq6RrYc50abP5mRrybL6T151XZCgw3A/O47h9wWwUlvHOt6KyFW3kHskk7OVkdWeFyQrybuXmlaqcyN6Ivd3L5RmGNgvlI53UvD3U2tcfoNk2CxVW1Zrt8dxrZmWvJyvhmhSJVgk5Ee9G+f6KIuyuQpW/KM0ouuJdP9uqRR6cTUvjHf70sO3Osf/nSJWy7b+iu5o9F8INUt4uWdY6jg0vi4psdPQuQabSf/LKve1WS2mSNRqKxrXInV6+evnbdCTb8jGunCCHSK5h65Rub8Ldled3O6j/mq1ubbm28X7Rcvo8yJ6uo/UNpk/lcw4+npyB+Hw+Oz+TxEOas0M9qWDGw04JlXsmdtKzeSVyIqqxrERvzlTdN9hQ+VBJqtugo9I6UdnLWrK+RkjZNkmQR05KcjGStkkayRHMVXO2kZvvs3ZrufptdW8LdUYnibNrPQv3P2HZDGw4zI4jUHaxw7QucsM0UkTHq1yI9zVardlTbqim18nmfvcROHup782Ka7B4nIVMlHSSSNr57Hg+ywMVF8zeF+/M5FTdO/rtf1DouPkszUK0lyBlW4+JrpoIpe0ZG9UTmaj9m8yIu6b7Jv37J3HNpOLeev8Ws7ojCaQjyDcMyhPbytnKJXiZFY5lXzeycqvajFVGp0cjXbuZ05tnc436Yo2560sOo1lhe6N6xaVykjN0XZdnNrK1ydO9FVF9Sno0DpWzHxI1nrZJWLiNT08X4FFJHLDZZ2EcqP7WKRjVYq9q3ZF69F3RFNXvwEw/5RsuI4r4/RuewOPxzMlkHY6pNW1BXt3EfyudE+ao1EfEyRGdHbu2VzUciKphx/KVyl6/gblLRaLo3N6iTTtLPWMojXvkSZ8TpFrtjcqMV0UqM3duqo3mRiLuTmF+TprfDQaXxrJdKOo6e1MmfXJff/D8vvLIrlndybRyckzuqLJzOaxN2oc30/mqeleM8VBrcbqyCLVs0tTTGOyd9smMllnex1tlCSsjE7Nr3vc5ZVZur3MVN0287zHEfcZwnL/KUymKrary66IWXSul80/EZTJ+NWJKiNkY1ZooOz89ESRrnI5zNuqIrtlLLy9aU/wDA1P8A/wDI5b/CkTl+B2dzvCHirp6vbx7bmscxaymPkmdKxkUU3YqxJt4+Zrk7Nd0Rq7bp9O25m/AbfVnHrK43M6sh03oqbU+J0k1PHd9Miys5j+ySZ8VeNWu7Z7I1aqormJuqIiqp1TT+cp6nwONzOOl7bH5GtFbry7bc8UjEexdvpRUONan4S69oZbXsGi8jgIcHrV3b25Mt2yWMbO+BsE0kLWNVs3MxjXI1zmbO9aoUmF17pPhZg8Zo5keopY8DUhxrJIdNZKw1zYo2sRUkjruY7dGp1aqoImYnePdrXizlMVriHR+k9LLqzPNpJkrzZL7aVenXc9WMV0isfu97mu5WInc1VVUTqcx4O8bc/Fwt0Diq+Jt6x11nvGdla+QyfZJBXguSNc+ew5JFRG80cbURrt+5NkQrrenNUZHiA3iRw6mxslfNY2PG5LG6pr26DvvEsixTMRYu0a5Od7Va9iI5NlReqKT2j+Amt+H2E0Nk8PdwFnWGBr5Khdr2pJ2ULla1aWxs2RGK9jmORip5ip1cnsUzvuN/H8pVb2MxtLH6UtWtd3Mtawi6ZdbYxILNZqPsOfZ2VvYtY5jkejVVySM2buuyZGqeOGptIppPG39DVoNVait2K1ejLno2U2pCxH7+Fdl1c9F2YzkRyqi92xNU/k86twUuM1hjszh5+I0ObyGatx2o5W4ydLkUcUtZqpvIxrWQw8r9lXdm6t87ZKXXWkeI2vNCtxOWwvD/ADEtqSZLmPvvtuqxxq1EhdFJyK5ZGrzqq8je9OVWqm5f1DrWJs2bmLp2LtNcfclhY+eosiSdg9Wormc7ejuVd03TouxlEzwz0td0Rw+07gMllJM1fxtGKrPkJd+ad7Woiu6qq/m3XfbvKY2PRwt/gBhv4pf+5xVErwt/gBhv4pf+5xVHL2n19fjP1WeMgAOdAAAY2SoQ5XH2KdmKOeCeN0b45o0kY5FTbZWr0VPoUkOH2ek1ZfyNxc1BkvFKNwluvXx74GRZGJVW29skiczmO5oURrfNb2bvOeq+bcAAAAAAAAAAAAAAA1eqv4MZj/g5v+xSe0z/AAcxX/CRf9iFTmKbsjiL1Rqo108D4kVfUrmqn/qR2k70U2Dp11ckdurCyCzWcu0kMjWojmuReqfn9aKip0VFPo4G/CmI1a7m6B45k9qDmT2oaZeQeOZPag5k9qAeQeOZPag5k9qAeQeOZPag5k9qAeQeOZPag5k9qAeQeOZPag5k9qAeQeOZPag5k9qAeQeOZPag5k9qAeTV4T/STd/RMP8AbSGzV7URVVyIid6qprtKI3J6wyeUrOSWlHUipJOxd2SSpJI57Wr3Ly7tRVRVTdVTvaqGuGHXPs+8LHetQAfKQAAAj+I3dpr9MRf2UpYErxErPfjcdcax8kePvxWpkY1XKkaI5rnbIiquyP5l29SKdPZpti0tRxe8Hqr24LcLJoJo5onpu2SNyOa5PoVD2cye1DqtZl5B45k9qDmT2oB5B45k9qDmT2oB5B45k9qDmT2oB5B45k9qDmT2oB5B45k9qDmT2oB5NJlv4XaM/SE39zsG65k9qGmVWZfWuCiqu7Z2Mllt2XMXdsSOhkiajl7t1WRdk332aq9yHpRuzT7J+krC9AB8hAAACW4p/wCjXVP6Nsf2alSaTXGJnz2jc5jqzUfZtUpoYmq5G8z3MVETde7ddup74ExTi0TOsfVY4wxwYWKzFXM02WK0qOavRzHea+NydFY9q9WuRUVFaqIqKioqboZnMntQ7ZiaZtKPIPHMntQcye1CDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UHMntQDyDxzJ7UMbI5Wpiqyz2p2wxp0Tfq5yr0RrWp1c5VVERqIqqqoiJupYiZm0D98Lf4AYb+KX/ucVRoNBYyfD6NxFS1GsVlldqyRqu6scvnK1V+jfb+Q35xdomKsauY1n6rPEAB4IAAAAAAAAAAAAAAAAAAAafMaOwGoZmzZXB43JytTlSS5UjlciexFcim4Bqmqqib0zaTgl/Jboz3RwP6sh+qPJboz3RwP6sh+qVAPbaMbnnrLWadUv5LdGe6OB/VkP1R5LdGe6OB/VkP1SoA2jG556yZp1S/kt0Z7o4H9WQ/VHkt0Z7o4H9WQ/VKgDaMbnnrJmnVL+S3Rnujgf1ZD9UeS3Rnujgf1ZD9UqANoxueesmadXHuFHDzS16LVqW9OYi26DUd6GPt6ML1ijRyK1jd0XZqIqbJ0237i58lujPdHA/qyH6pp9Jr9zXE/VuDnVGR5lzNQY/ffz2pHFXtMbv08yRkL12/Gm+06ANoxueesmadUv5LdGe6OB/VkP1R5LdGe6OB/VkP1SoA2jG556yZp1S/kt0Z7o4H9WQ/VHkt0Z7o4H9WQ/VKgDaMbnnrJmnVL+S3Rnujgf1ZD9UeS3Rnujgf1ZD9UqANoxueesmadUy3hho1jkc3SWCa5PWmNhRf+0ooIIqsLIYY2QxMRGsjjajWtRO5ERO5D2A868SvE/vqmfFJmZ4gAPNAAAAABO2uHOk707prOl8NYmcu7pJcfE5yr9Kq09Pkt0Z7o4H9WQ/VKgHvHaMaN0Vz1lbzql/Jboz3RwP6sh+qPJboz3RwP6sh+qVALtGNzz1lc06pfyW6M90cD+rIfqjyW6M90cD+rIfqlQBtGNzz1kzTq4/xH4d6Vp6j4cR19OYirHZ1E6GeOKjCxs8fi667kemyczeZrHbderGrt03S48lujPdHA/qyH6pqOJ6uTU/DDlXoupnc3f3eLL/s+nbv6fy7F+NoxueesmadUv5LdGe6OB/VkP1R5LdGe6OB/VkP1SoA2jG556yZp1S/kt0Z7o4H9WQ/VHkt0Z7o4H9WQ/VKgDaMbnnrJmnVL+S3Rnujgf1ZD9U32OxdLD1vB6FSClX3V3ZVomxs3XvXZERDKBirFxK4tVVM/ul5kAB5IAAAAANLltFaez1hZ8ngcZkZ123lt045XLsmydXIq9DB8lujPdHA/qyH6pUA9ox8WmLRXPWVvKX8lujPdHA/qyH6o8lujPdHA/qyH6pUA1tGNzz1lc06pfyW6M90cD+rIfqjyW6M90cD+rIfqlQBtGNzz1kzTql/Jboz3RwP6sh+qPJboz3RwP6sh+qVAG0Y3PPWTNOqX8lujPdHA/qyH6o8lujPdHA/qyH6pUAbRjc89ZM06oLVvDTR9bSuZmj0rg4JI6Uz2ysx0KKxUYqoqKjeioYXDjhlpSfh5peS3pfDWbb8XVdNPNjonPkesLeZzlVu6qq7qqqbLjFdndouxgqEjWZnUS+J6KL1VrpWqkkqJ60ii7WVfojUsqdSKhUgqwMSOCBjY42J81qJsifzINoxueesmadU75LdGe6OB/VkP1R5LdGe6OB/VkP1SoA2jG556yZp1S/kt0Z7o4H9WQ/VHkt0Z7o4H9WQ/VKgDaMbnnrJmnVL+S3Rnujgf1ZD9UeS3Rnujgf1ZD9UqANoxueesmadUv5LdGe6OB/VkP1R5LdGe6OB/VkP1SoA2jG556yZp1S/kt0Z7o4H9WQ/VMzF6G03g7TbOO0/i8fYb3TVaUcT0/MrWopvAScfFqi01z1lLyAA8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABP6x0k3VFStJBY8XZmhJ4Tjsi1nOtablVvVu6c8bkVWvZunM1VTdq7OTC03r6O/lUwGbr+JNUMjV60ZHK6K01ETmlqyqiJNGm/XZEezdOdrN03rTVal0riNZYt2NzeOr5OkrmyJFYYjuR7erXtXva9q9Uc1UVF6oqKBtQc8dpfWujkb9zWch1HjY02TEankes6J7I77Uc/p//dHK5em70DeM9HDL2esMPldEvaiq6zk4UkobJ3u8MhV8LE9adq5jtvmpsuwdDBh4nMUM9QivYy9WyNKVN47NSVssb0+hzVVFMwAAAAAAAAAAAAAAAAAAAAAA59xRaq6o4XKkfPtqdyq7ZfM/yZf69P5uvtOgnPeKLObVPC1eRzuXU7l3b3N/yXfTdend129XVUOhAAAAAAAAAAAAAAAAAAAAAAAAAAa7PajxOlse+/mspSxFFnp2r9hkETfzucqIhHLxjqZeRYtKYHNauk5uXwinV8HpJ/veE2Fjje1PX2SvX6FA6ETmp9eYzS9qtj39rkc3bbzVcNQRsludu6NVyNVURrEVU3kerWN36uQnk0/r7V3XOZ2ppHHu78dpree05PY65MxERF9kcLHJ12f3KU+ldEYPRNexHhseyo+1J2tqy5zpbFqTbbnmmeqySv26cz3OXZETfZAMHTGmbsmT+6PUSQv1A+J0EMED1khxsDlaroYnK1quVysYr5FRFerW9Ea1rUqwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIfK8FtH5K9NkIMT4jys3WTJYGeTG2ZF9r5IHMV/5n8yL3Kip0MRujdc6fa/xLrlMvEieZV1Tj451TqnRJq/YuTpv1eki+3c6GAOeN1xrXCNf4+0BJbjYm/hOl8lHdavVE3WOdIJE9vK1r+7vXvPZV476JfO2vkMwum7bl2StqSrLi3uX2N8IaxH/wDyqqL6lUvz1WasN2vJBYiZPBInK+OVqOa5PYqL0UBWsw3IGT15WTwyJzMkjcjmuT2oqdFPaQE3AjRCWZLONwqabuSbq6zpyxLi3ucqbczlruYj1/8AMinrZoHWGEdvhOIdu1EiLy1dS4+G9G3p0RHxJBKqb+tz3L9IHQwc8bqTiPhF2yejcdqCBqKvb6cyqMnf/wD4Wmxsb/Xr+dA3jppykvLqCvmNIyIiq52exk0Fdu3fvZRroOn0SKB0MGtwOpcPqqklzC5WjmKa91ihYZPGv/zMVUNkAAAAAAAAAAAHP+KDebVHC9eVF21M5d1Ren+TL/VNv/Xp/LsdAP51/Lr4zcZOF3HnC08NlGMwEksOS03EzHwyqyx4O6rKxXOYqvdzSyryqq9JW+xD7t4ZVNSUdAYGLWGQblNUeCtfkbLImRNWZ3nOajWIjdm78qKidUbv3qBTgAAAAAAAAAAAeq1ahpV5J7E0deCNOZ8srka1qe1VXogHtBBW+O2hobEtanno89ci256un4JcpM1V22RWVmyKi9U79ui79x6U4kalzC7YLhzmHsVFVtvO2a+OgVfVu3nknT+WH1+vuA6GDniY7ijmtltZjTWlolXzocdTmyUyJ7Gzyuian51hX+QJwbZkmqmotYar1HzKiqyTJ+ARfm5KTYEVvXudzb+vcCp1LrXT2jK3hGfzuNwcG2/aZG3HXbt3d71Qll44YS+jU0/jM/qxzk3Y7EYqVYHfmsyoyD1f+J9PcbnTXCvR2jrC2cLpfE4647q+5DUYlh6+10u3O5fpVVKoDniag4kZxrfF+ksVpuFy9ZdQZPt52J02+8VmuY71/wCvTbZO/foTh3qnNtX7o+IOQcxyorqum6keMhX6OZVlnT+SZDoYAj8Lwi0fgciuRgwVezlFdz+Msi5923v1/wBfMr5PWvziwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjM9wb0RqW6t69pjHeMl//AHGtD4PbT808fLIn8jjXeSrJ4dq/c5r7UeMano1snMzLQfmctlrpl/kmRTogA534VxSwSffqOmNXxJ3yVJ58TPt/uxPSdjl/PIxP+h5dxjjxTnt1HpPU+nEZ3zvxy3oF6+l2lNZka317v5eneidx0MAcC4r/AC1+GfCyDTk65urn4spkFqWGYqdJZaMSRqr5pGIi7crliarHK1ypIqoi8iodr05qPF6uwdLM4W/Bk8XdjSWvbrPR8cjV9aL/ADoqd6KiovVDg/ylfkd1PlM6wwGTzOqrGKxGIrPhZjadCNZJJHv3fIs6rvsqNjbyq1UTkVU25lMSlwj0/wDJk0R9x2jruXc3UEyzWXZC86XkijREldG1ERsbn88bFVrUVUXv3a3bo7PgVdpxacKnjKw6Dq/jM6tampadrw23xuVkmQs7rA1ydFRjWqiybLum+7U6dFUh5tf6xsPV66nsQb/Mr1KyNT83NE5f51NIxjY2o1qI1qJsiImyIh5P3+D/AA/s2BTliiJ9sxf6/ZM2jbfdxrD3tv8AwtP7AfdxrD3tv/C0/sDUg6dm7P8A9dPwx5Jmlgasx1rXWU0/kc9lrOSu4C34djJpa9VFrTbbcybQpv3Iuy7puiLtuiFL93GsPe2/8LT+wNSBs3Z/+un4Y8jNLbfdxrD3tv8AwtP7A8t1zrBq7/dZeX6Fq1PsCO0bqynrjTlbNUI54qth0jWssNRr0Vkjo13RFVO9i7de7Y3Rmns/ZqoiqMOm0+7HkZpWGF4v6lxMjUyHg+drbpzIsaV7CJ61RzfMX8ytTf2odh01qWhqzFR5DHyq+Fyq1zHpyvienex7fU5P/VFTdFRT5uNnpXNz6fz8Sw25qNfJq3H2Zq/Lzx9ovJFM1Ho5vNG9yKiuaqbK7dFQ+T2/+F4WJhzXg02qjThP7fRYm+503W3ygtDcPte6a0ZmMyyPUeoLTKlWlAxZXRuf0jWXl35GudysRV9b0X0Uc5N5qPiro3SNttTMaoxOPvOXlZTmuMSw9fY2Lfncv0IinxXxB/8AZl567qx2qNO8Rky+YdcS677qq6yLJIjubz5ER6P6p1R0ey9yop9yaa0Vp7RlZa+n8DjMHAqbLFjacddq/wAjEQ/DiYTjBHknI3T+ktU6h3VqJKzGrRh2VPS7S46FHNT1q3m+hFXoeFyPE/NtTwXDab0tG5P3XJXJsjM1d/XDE2Jvdt3TL/6r0IAc8XhxqXL7rneIuYexyIjqmCrQY6BV6bqjuWSdPX3Tev1rsp7avAjQsU7bFzAR5623ZUs6hmlykqL7UfZdIqL09WxfAD1VqsNKvHBXhjggjTlZFE1GtansRE6Ie0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcR43I9utcUrt+zdj5EZ7N0kTm/6sO3EHxd0hNqPCV7tGJZsljXrLHE1POliciJLGn0qiI5E9bmNT1n1P4ZjU4Paqaq+HDqsOKg/DJG2IkfG/zXJ0cnqI/wC4jUP/AMQ878Hj/wDDH9BqqmnhF+n3lhZny9e0/JrzU+vZc1qLAYbK0crNVrzZaKbwyhXRG+DyQPSzG1jVRUcio3q7ffm7jt33Eah/+Ied+Dx/+GN1d0Zg8rcq3cliMfk8jWajY71upE+Zu3rRyt6devTY5MbCntERExa2vf0kcVvaIoag1LxUbn2JlruOxNFYrL1c1GT+Bv5pmNRdmPVWNXmTqm225j4CTF6/1Lputr6zHYpN0hj8hQrXp1jhsTyIvhEy9UR0jdmJ69kXf17nf/E2P7a7N4DW7a81rLUnYt5rDURWtSRdvOREVURF36Kph39GafytOlUu4LG3KlFEbVgnpxvZXRERESNqps1ERETpt3Iec9k33i3Gb+3fff4CM+Te2JnBnANhdzQo+0jHI7m3b4VLt19fT1nSyUuaHsxrHFg9Q3NL46NuzMdi6dNIGqqq5zkR8DlRVVVVeu30d56PuJ1ByonlCzm+/f4Hj/8ADHRh5sKinDyzNoiO7zFkYmXa91CRsW6zOVrY+Vdl51ciN2/l2MTT2HvYeCVl7O3M697uZstyKCNzE27k7GNibfnRVLvhxpWTVeqK07mL4rxczbE8ip0fM3Z0UaL61R3K9fYiN39JDeLjU4OFOLXuiP8AbfutPF9AgA/lygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5/rDhDS1Bblv42yuHyEqq6XljR8Ezl+c9m6LzfS1U39e5Cz8H9YQvVI2Yayz1PS5LGq/nasK7fzqd6B9bB/inacCnJE3iNf9ut9XAfJLrP8AFMR+sH/YjyS6z/FMR+sH/YnfgdP867TpHT/Ju0cB8kus/wAUxH6wf9iPJLrP8UxH6wf9id+A/nXadI6f5N2jgPkl1n+KYj9YP+xPLeEms1XZauIT6VyEn2J30E/nXadI6f5N2jjeG4HZGzI12cysNaBFRXV8Wiuc76O1eibJ+ZiL7FQ6xicRTwOOgoY+uyrTgbyxxRp0Truq/Sqqqqqr1VVVV6qZgPndp7Zj9q9bVu07gABxIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/2Q==", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAQDAvkDASIAAhEBAxEB/8QAHQABAAMBAAMBAQAAAAAAAAAAAAUGBwQBAwgCCf/EAF0QAAEEAQIDAgcIDAsGBQMCBwABAgMEBQYRBxIhEzEUFRciQVFWCBYjMmGU0tM2QlNVYnF1kZOV0dQkMzU3UlR0gbKztCU0cpKhsQlDY3OCJ8HDGIRERWSio6Tw/8QAGwEBAQADAQEBAAAAAAAAAAAAAAECAwQFBgf/xAA7EQEAAQEFBQUGBAQHAQAAAAAAARECAxJSkRQhMVHRBEFhcZITM6GxweIFYoHSFSIy4SNCQ1OisvDC/9oADAMBAAIRAxEAPwD+qYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOHM5eHCUXWZWSTO3RkUEKI6SaRfisYiqiKqr61RE6qqoiKqQyaUl1A3ttSSrZ50/kqGRUqRde5dkRZV9Cq/ovoa3fY22bETGK1NI/9wWiXn1FiqsixzZOnC9O9slhjVT+5VPV76sJ9+KHzpn7T8w6PwNdvLFhMdE31MqRon/Y/fvWwv3oofNmfsM/8Hx+C7nj31YT78UPnTP2j31YT78UPnTP2nn3rYX70UPmzP2D3rYX70UPmzP2D/B8fgbnj31YT78UPnTP2j31YT78UPnTP2nn3rYX70UPmzP2D3rYX70UPmzP2D/B8fgbnj31YT78UPnTP2n7i1LiJno2PK0pHL3NbYYq/9z8+9bC/eih82Z+w/MukcFMxWSYXHyMXva6rGqL/ANB/g+PwTclUVFRFRd0U8lZXRMWJ3m07MuEmRVd4NH1pyr/RfF3NT5Y+V3yqnRZPBZpMxBKksDqd6u/s7NR67rG/5F+2aqdWu9KL3Iu6JjasRTFYmsfEpySYANKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsdMvxBex+zocPUZJG1d+k86varvVukbFRF9UrvWWcrGNb4HxBzUbt08NpVrEa7dF5FkY9N/k3j/AOZCeyWSqYbH2b9+1DRo1Y3TT2rMiRxRRtTdz3uVURrURFVVXoiIdF9xsxHCkfKs/Gqy6QUBvug+Fr3I1vErSDnKuyImeqqqr+kPMXugOF9iVkUXEjSMkj3I1rGZ2qquVe5ETtOqnOiuYX3R1XWWlc9nNN6S1Lbx9Khau0MlYpxMqZLsXKxUhcsyL1duqJJyKrWuVO49XDPjtl9R8EMJrLL6H1HNkrNSo91PGVIZHXnyxtcs1ZjZ3bQ7uXZZXMVE70QqGgOGmsE4h5uWrpKXhrpHJ4u7Dk8W7MRXqVy9K5OzsVoY1XsVRO0V67M5uZE5d03IlmhuJl/gNo3Rd7RVmFulbGOqZTHVM5XYmo6EMUkcjIZGyJyNVzYHqyVY+ZN2+vcNMs+6e0tj+HGd1hfx2cx8OCyMOKymJs02tv055ZImNR0aPVHJtPG/djnbtXzd16EFrr3RWosBqXh7Uo8OtSJXz2Rt17FOzBUS5NHFVfKzsUW0jWqrkRy9oqLyxvTZHbIud1uBGrotG8ScXj9BVdNVs3qLA5jF4mnerOijghnrduxVRzWtextd0jk+Kqv2Y56mzcctMakuZ7h5qrTOGTUdrTGWlsz4ltqOtJPDNVmruWN8iozmasiO2cqboi9QNWryrPXikdE+Fz2o5YpNuZiqncuyqm6fIqnsM+Tj1oCi1lfOa10xgMzG1G3cVdztRJqc23nwv+E+M127V+VD9P8AdBcLo12fxJ0g1VRF2dnaqdFTdF/jPUoF/KxmtsTrHB32bNTIq/GWO/d+zJJolX/hVkiJ/wC6pM4PPYzU2Kr5PD5GplsbYRXQ3KM7ZoZURVRVa9qqi9UVOi96KQ+q2+GZ/StNu6vS8+4/ZN0SOOGRFXf0efJGn950XH9Ux4T8pWFmABzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbUWHmveC3qCxsy1FyvrrMqoyRFTZ8T1TdUa5PTsvKqNds7l2X24jPU89HLE1HQ2o02sULKI2aFV9D27r0Xrs5FVrk6tVUVFJQi81pnG6g7N12tzzRptHYikdFNGnp5ZGKj29ydyp3G6zas2oizb7uEr5uvxbU/qsP6NP2BMdURd0qwov8A7aEAuh3tVey1Jnom/wBFLTX7f3vYq/8AU8e8if2pz36eL6oy9nd5/hK0jmtIKt7yJ/anPfp4vqj8zaKsMie5NU57dGqqfDxfVD2d3n+ElI5rWDLuFeKymsOGGj89kdU5lMhlMPTvWfB5oUj7WWBj38vwa+bu5duq9PSWj3kT+1Oe/TxfVD2d3n+ElI5rC+hVkcrnVoXOVd1VWIqqePFtT+qw/o0/YV/3kT+1Oe/TxfVHn3jyqmz9TZ57V708JY3/AKtjRf8AqPZ3ef4SlI5pfKZihp2ox9mRsDXLyRQxt3fK7v5I2J1c5fU1FU4sDjLMl+xmslEkN+yxIYq3MjvBYEVVaxVRVRXqq8z1b032aiuRiOX3YfSWMwlh1mCB8t1yKjrluZ886ovenO9VVE+RFRPkJgk2rNmJs2O/jJ5AANCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrsf7vL/wr/wBj2Hrsf7vL/wAK/wDYCj8Ala7gTw4ViqrV03jdlXvVPBY/lX/uv4y+FD4B7+QrhzurVX3t43dWIiN/3WPu5em34uhfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrsf7vL/AMK/9j2Hrsf7vL/wr/2Aovuf0ROA3DdEc16JprG+cxNkX+Cx9UTZOn9xfig+5+28g3DblVVb72sbsqpsv+6x+j0F+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNz+ciwFFJ3xvsTSPSGCvF8eaRd9mpv0TuVVVeiIiqvRCuSZ3VznKrMfhY2r3Ndcmcqf39km/5josXFu8jFHDxlaLqCkePNYf1HB/Opvqx481h/UcH86m+rNmy2+cawUXcFI8eaw/qOD+dTfVjx5rD+o4P51N9WNlt841gou5jPuo+Pl/3OuhqupotJP1RjJLHgtt0d7wZ1VXJ8G5U7N/M1VRUVemy8vfzdLf481h/UcH86m+rK7xFwGd4naGzelczjcHLjcrWfWl2sy7s3+K9u8fxmuRHJ8rUGy2+cawUUL3CnHqbjRwwZj00xLg6WlKdDER3X2UlbeeyFWvVrUjYjOVGMXZN/4xE6bdfpYwvgdw5zPAjhti9IYaphrEFTmfNbknlbJZlcu7pHIke269E+RERPQX3x5rD+o4P51N9WNlt841gou4KR481h/UcH86m+rHjzWH9Rwfzqb6sbLb5xrBRdwUjx5rD+o4P51N9WPHmsP6jg/nU31Y2W3zjWCi7gpKZzV6LutDCOT1JbmTf5N+z6E/p7UDc2yxFLAtO/VcjLFZXc3Lv1a5rtk5mOTqi7J6UVEVFRNdu4t2IxTSY8JKJcAHOgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACna8X/bej09HjGVevr8Dsdf8Av+c7jg15/LmjvyjL/pJzvPUj3djy+srPcAAiAOHKZzH4RaaZC7BTW5YbUrJPIjVmmciq2Nm/xnKjXLsnXZFX0HcAAIfSmrsTrfDplMLb8NoLPNW7Xs3x/CRSuikbs9EXo9jk322XbdN02UgmARWqdU4nRWAuZvOXo8di6jUdNZl32buqNRNk3VVVVREREVVVUREVVP3p3UFLVWFq5XHrOtOyiujWzWlrSbIqou8crWvb1Re9E9YEkAQ+S1dicRqPDYK3b7LK5hs7qNfs3u7ZIWtdL5yIrW7I5q+cqb79NwJgHDjM5j80+62hdguupWHVLKQSI/sZmo1XRu27nIjm7p3pudxQI3TK/wD1F1Ano8VY9e709tc/YSRGaa/nH1B+Scf/AJ1wy/0rzy/+oZRwldgAeUxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU3Xn8uaO/KMv+knO84Nefy5o78oy/6Sc7z1I93Y8vrKz3Mx90DgdW57SOOZpKe6klfJRWMjSxeQ8AuXqaNej4YbHTkerlY7vbujFTmTcxO1r3M8ScxoTSOib+bsYWbDXcjN421BLiMlYsQ2kgfBLaZDLIroV592N25uiq5Ub530vrnh7geI+Mr4/UFSS3Wrzpah7G1NWkjlRrmo9skT2uReV7k6L3KpA5LgFoDK6Yw2n5tOQx4zDOc/HJVnlrzVXOVVe5k0b2yIrlVVcvN5y9V3NUxMzuRhOu9Aaqfp3hfjtfZe4ttmv461KXG52d8zKUsEqsSWwxkKvmY5jmpLyo5EXou7nb/V2NosxeOq045Jpo68TIWyWZnTSuRqIiK97lVz3Lt1cqqqr1Uqdzgzo2/oSvo6fCMfp6vKk8NZJ5UfHKj1k7VsqO7RH87nO50dzbqvXqpxv0prjB8mP0rnNOY/T9ZjIqlbK4m3essajU355/DWq9ebdd1TfZURd9t1sRQVLW/jDiFx+h0LLqLLadwWO063NrFhLjqdi/NJYfCnNKzzuzjRnxWqm7pE33REQw7RuX1THo/hrw/wABasujy+U1NNZnXMuxdi6ta/Jyxpajhkc1V53SORjUV3L3om6L9NZbg5jeIVXGWOINahms/jnyeD5HDNs4xY2O23Y1Wzuk2VETdFerV9R+5fc/6Am0TR0k7TsaYKhZfcpwNsTNkrTPe57nxTI/tGKrnu+K5Oi7J06GM2ZneMF4m8P9ZQcJ4aWtstdSFmscSmLbT1BPZnirS2q7HRzWEjhWVzX87mOc1XN3au+7UUnOOMmUs5PMYXRuQ1a/JaO07FYt3GanfRqVfMldDJIiskfbnckblcj/ADVRqbuRXKpttbg7pCppStpuPEqmHr3o8kyB1qZzlsxytlZK6RX87l52tVeZy77bLunQ9ereCui9dZ5MznMGy9fWFtaV3byxx2ImqqtjnjY9GTNRVXZJGuRN1LhkZ7ww1xmdVcWdJzXr86wZPhtTy01JsjkrrZknar5Uj35ebZ22+2+yoncUXhXm72odV8Dr2SyFjJWpLusY/CbUzpXua2y9rG8zlVVRGNaiJ6EaiJ0Q3O7wG0Pfx2BoyYeRkOCrLSx7oL9mKWGuu28KyMkR74/NanI5VbsiJseylwK0LjcNp3FVdPxV6Onbz8limRzStdTndI6Rysfzc3Krnu3Yq8qovLtsiIMMjGeFPDrJPw3HCXSeoMpR1Q7UGVxtCa9lbE1aKRYoHMlfE5zm9puqfCq1XonrRNjQPc6ZZnguf0/dk1NBqjESweNcdqbJLkH13SR7sfBPuqPik5XOTr3oqcre4suT4F6Hy+ezOYs4RVvZmF0GQ7O5PHFZa6Ps3K+Jr0YrlZ05+Xm+UlNB8L9M8M4LsencatJbsjZLM01iWzNM5reVvPLK5z3I1OiIq7J6NhFmYkWkjNNfzj6g/JOP/wA64SZGaa/nH1B+Scf/AJ1w3f6V55f/AFDKOErsADymIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACm68/lzR35Rl/wBJOd50arwU2Zq1ZacjI8hRnSzW7VVSN7uVzHMft1Rrmvcm+y7KqO2dy7LXn5LUEa8q6QvyL6XRW6qt/u5pUX/oendzFu7sxExu3b5iO+Z7/NlxTIITxtn/AGNyfzqn9ePG2f8AY3J/Oqf15s9n+aPVZ6lE2CE8bZ/2Nyfzqn9ePG2f9jcn86p/Xj2f5o9VnqUTYITxtn/Y3J/Oqf154dmM8xquXRuTRETdf4VT+vHs/wA0eqz1KJwFU07rXI6s0/jM3i9J5SzjMlViu1ZlnqM7SKRiPY7ldMipu1yLsqIqekkPG2f9jcn86p/Xj2f5o9VnqUTYITxtn/Y3J/Oqf148bZ/2Nyfzqn9ePZ/mj1WepRNghPG2f9jcn86p/Xjxtn/Y3J/Oqf149n+aPVZ6lE2Rmmv5x9QfknH/AOdcPQ3KZ9y7e8/Is6d77VTb/pMq/wDQnNK4O3SsXsnkeRl+6kbFgicrmQRM5uRm/wBs7d71VURE3dsm+26426WLu3EzG+Kbpie+J7vI4RKwgA8piAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrsf7vL/wAK/wDY9h67H+7y/wDCv/YCk8CG8vA/h4ipyqmnccm3Ly7fwaP0bJt+ZPxIXoofAJnZ8CeHDEa5qN03jU5XN5VT+Cx9FTddl+TcvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD12P93l/wCFf+x7D12P93l/4V/7AUX3P6o7gNw3Vq7tXTWN2VWo3dPBY/QnRPxF+KJwER6cDOHSSLI6T3uY7mWVNnqvgse/Mnr9ZewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7M6ixWnYWTZXJVMbE9eVj7czY0cvqTmVN1/EQ/lU0d7UYn55H+03Wbm8txWzZmY8lpMrSCreVTR3tRifnkf7R5VNHe1GJ+eR/tMtmvsk6SuGeS0gq3lU0d7UYn55H+0eVTR3tRifnkf7Rs19knSTDPJaQVbyqaO9qMT88j/AGjyqaO9qMT88j/aNmvsk6SYZ5LSV7WOvNM6HrRLqPUWJ0+lpHpAuUvRVu2VqJzIzncnNtum+3dunrOfyqaO9qMT88j/AGmJe7CwWjOO/BHMYitqHES56injDFKluPmWdiL8GnX7dquZt3bq1V7hs19knSTDPJoXuZtYae1JwX0VRwucxuVs4vT+Nhu16NuOaSo/wZrUZK1rnKxd2PTZ3pa7v2U1Q+Nv/D+0npnglwimvZzN46hqjUcrbNytPaYySvFHzNhic1V6ORHPcvq7TZeqH1B5VNHe1GJ+eR/tGzX2SdJMM8lpBVvKpo72oxPzyP8AaPKpo72oxPzyP9o2a+yTpJhnktIKt5VNHe1GJ+eR/tHlU0d7UYn55H+0bNfZJ0kwzyWkFW8qmjvajE/PI/2jyqaO9qMT88j/AGjZr7JOkmGeS0gq3lU0d7UYn55H+0lMLqrC6kWRMVlqWSdH1e2rYbIrPVuiL0/vMbVze2IraszEeUpSUqADSgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhlTJZzO5CdO0sx3ZKcb3dVjiYjURjfUiru5dtt1Xr3E4QOlv4/UP5Xs/8AdCePYvd1qnl8lniAA1IAAAAAAAAAAAAAAAAAAAQGsHJQow5WJEZdpTwuimb0dyulY17N/S1zVVFRencu26IT5XtffYtZ/wDdg/zmG2533lmPFlZ4w0QAHjsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ9pb+P1D+V7P8A3QniB0t/H6h/K9n/ALoTx7F7/Ws8WU5bjFnr2ss5gdFaKXVTMA+OHKXZ8pHRjZO9iSdjDzMd2j0Y5qrvytTmROYieMnujLHBfLK7K6fx78DGyOWS1JqGvDdlYu3aOr03JzS8m67pzNVeVdkU90vD3iDofW+q8noS1pu1iNTWWZCxW1Athj6VtImRPfH2TV7VjkjYqtcrFRU6O2KpxG9zxrDVNviXXx0+mH1daxR8+XybJn3qXJAyPwdjUbyrFzM3a7nRW9o5eV6p15pxURZ6mv8AXNj3TWZ0zXx1G3pOvh6FpFfkezdCySSZH2GtSBVe9VZy9mr0REjRyO85USr5X3bOnsdkrlhlfEz6ap3nUZbS6jqsyTuWXsnzR49fPdGjt1TdyOc1OZG7Km92doDWuK4rY7WGKdgZYr2Fp4jOUrk8zVh7GV8iyVntjXn6SyNRHozuau/VUSK4f8K9d8MLLdO4h+lcjodmTktQWsiyfxjXrSzLLJByNbyPcivejZFem26btXbYfzD0ag90tlKNu1bxmjEu6Uq6kj0xLnLOUSFUsrYbBJJ2CRucsTXuVvNvuqp8XbqdepPdGX8XLqzJYrRc+a0dpO0+nmcy3IMila+JGusLBXVqrKkSO85VezdWuRN9jCtTZmnpDjVnGI3G6ohXVLMjHoynlL8Fh1pXsRLDKS1ljkkavwiu7Xs3OTm6dNth1LwQ10tLXulNO5TAwaO1pesXLdu8k3h9BLTUS2yKNrezlR3nq1XOZy86777IY1mRacbxnzWp+Jme0tpzScOSo4ZaElnNWMr2EToLMLZUcxnZOVz0RXbM7lRvVzd0Qq+hOJmtX6OzeTxmk48par6hy0GVhzmrtose6GXZyQzLV6woqP5Wq1vI1qdV36Xrhvwxs6E11rbJpJXXE5duNioRMe50sbK1VIFSTdqIiqqdNlXdO/buM01XwN4hz6GzemcLPp2alndXZDNZSO7esQJYx81hZWVeZkDlRXovLJt3IitRXcyqmW8dLPdavp6B0xmszpzHYHManmndicfkdQx16slSJGqtqW1LExI2u5k5WoxznI5ionVeXQ+C3GbH8Y8Vlpq0NevexNzwK5FTvx3q6uVjXtfFYj82RitcnXZFRUcioioU7OcM+IuoLul9VrBpDF6v03JZq18XDPYnxlyhNHGjo5HrC18T2ujRWq1jkTlTv3VEudXWtnQGEqJrmtHHlrkkrkj0lhr9+uxjVTZrnRwudvs5POcjObrsnRRFe8cPultT3dIcIsrkqla5NGyWCOzLjsquOtQROka3tIpUik87mVicuybo53VNusPq7j9nMHnOIFTF6H8c0NEtinyVx2WZAskL6rLCrDGsbldI1rn+YqtRUaio/d3KnRxGsV/dBcM9SaU0w67UyU7IHJJnMRex0KI2dj186aBvMuzF6NRV7t9k6nuu8JMxZt8apW2aKN1rVjgxyLI/eJzcelZe28zzU50383m835egmszuEK7ilrLK+6DweKwOPp5DSF/TEeVRljIeDu7OSxEjrOyQOVXta7lSLmRHIqrzNUhNTe7VwGAy2YfFVxNrAYi4+lanfqOrDknujfySvgoO8+RjVR227mucjVVrVRU3skXCjWWl9SaH1Bp6fB2ruM0zHprKVcnLNHE5jXRP7WB7GKquR0bk2c1EVFTqinq0hwr13w2yt3EYF+lcjoyzl5cjHNlmTpfpxTTdrNA1jG8kmyufyPV7dubqi7bE/mDUvujMvh7GvZ8fohcrg9FzN8Z5BMsyJ8kC1orDnwxLGque1sjlVjlamzU2equVrfLeJOtL3ulGYDF4+jf0fJpypkW9rkOxc2OWw5r7SN7ByueiIrEiVyIqMR3MiuVE68rwZzV7AccaMdqg2XXCSpjVdI/lh5sfHWTtvM83z2Kvm83m7enoft/DLWGn+Imm9UafmwlpI9PV9PZWrkpZo+VkUvaJLA5jHczvOenK5Gp3dS7xsRXtffYtZ/8Adg/zmFhK9r77FrP/ALsH+cw6rn3tnzhlZ4w0QAHjMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPXLPFX5O1kZHzuRjedyJzOXuRPWvyAewFeqa9w2TkopjbEmXiuWJarLONgfYgY+P+M7SViKyNEVNt3Km69E3XoeMfmc/lH4qZNPNxdOZ8yXo8ncYlquxu6RKxkKSRvV69VRZG8rfWvmoEBpb+P1D+V7P/dCeKvo+G9hbOTxmdtVps1JbfcWStA6CKwx6IvPExznryou7VTmcqKnVeqFoPYvN9qvl8lniAA1IAAAAAAAAAAAAAAAAAAAVniTOtXRl+ZIpJ1jdE9IokRXv2lYuzUVU6r3IWYgNXo3I04cRC5JL1yeFI4W9XcjZWOe9UTua1qKqqvTuTfdUNtzuvLM8pZWeMJ9+vsTVa9b/AIXi+yxyZSd96nLFFDAvfzyq3s0e37ZiOVze9U22UlMfn8Zl3Rto5GpcdJAy0xsE7Xq6F6bskREX4rk7ndy+g7yLy2lsNnmWmZHFUryWq61J/CIGvWWFV3WNyqnVu/Xbu3PHYpQFcsaEx7ktLUs5HFyz02UUfSvysbDGz4ixxq5Y2vTu50bzKnRVVOgtYLPRJddjtSq2R9WOGrHkqLLEMEre+VyRrE9/Mne3nTr3K3uAsYK3et6roQ5KSDHYzLLGyDwKFlp9Z8zuiT86uY9GInVzNlXfuXb4x+sjq6XErm5Len8wlPHdisdmtCyz4cj/AIywRRPdKvIvRyOY1fS3mTqBYgV+5r/TuMkybchlq+MbjXwR2pcgq1oo3TbdknaSI1q8yqiJsq9fN7+hORzxzOkbHIx7o15Xo1yKrV79l9SgewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABz379bF0p7l2xFTqQMWSWxO9GRxtRN1c5y9ERE9KkHb1mksd5mExlzO269eKxG2FnY17CSfERliTaJ3Tzl5XOVE9G6tRQsh+Jp460L5ZpGxRMTmc97kRrU9aqvcV/I43UWYZlqyZePA1pmwto2sZC2S5AqbLM5yzNfEqr8VqLGqInVd1XZPbb0NhMlYykmRprlo8k+B9irkpX2qyLDssXZwyK6OPZyI7zGpu7zl3XqB+bmucVXmvQVnT5W5RsQ1bNXGwOsSQySdWo9Gps3ovMquVEamyrtum/iXI6iuLI2liK9Hssg2FZMlZRe2qp8eaNsXN5y9zWPVq+l23cthAFdXTmVuSI69qKyjYsmt2GPHQsrtWBNuStLvzq9vpc5Farl9Seae+lorCUZlmbQZPP4ZJkGzW3OsSRzv6Oex0iuVnREREaqIiJsiInQmwB4RNk2Toh5AA4Mxp/F6hgbBlcdUyULV5mx24GytRfWiORdlIXyWaM9ksJ+r4volpBus315Yilm1MR5rWY4Kt5LNGeyWE/V8X0R5LNGeyWE/V8X0S0gy2i+zzrK4p5qt5LNGeyWE/V8X0R5LNGeyWE/V8X0S0gbRfZ51kxTzVbyWaM9ksJ+r4vojyWaM9ksJ+r4volpA2i+zzrJinmq3ks0Z7JYT9XxfRHks0Z7JYT9XxfRLSBtF9nnWTFPNVvJZoz2Swn6vi+iPJZoz2Swn6vi+iWkDaL7POsmKeareSzRnslhP1fF9EeSzRnslhP1fF9EtIG0X2edZMU81W8lmjPZLCfq+L6I8lmjPZLCfq+L6JaQNovs86yYp5qt5LNGeyWE/V8X0R5LNGeyWE/V8X0S0gbRfZ51kxTzVbyWaM9ksJ+r4vokthtL4bTiSJicTRxnabc/gddkXN6t+VE3JMGNq+vbcUtWpmPNKzIADSgAAAAA/MkbZWOY9qPY5Nla5N0VCByugdO5mPJts4iqj8m6J92eBnYzWHRLvGr5GbPVW+hd+noLAAK9e0g+d+SlpZ7MYuxemimdLDYbMkSs2TlijnbIxjXImzmtam/emy9Txco6og8YSUcrj7LpbEb6sF6m5rYIv8AzI1ex+7lXva7bp6UcWIAV23mdQUHXnO042/CyzHHVTHX2Olmhd8eR7ZUjaxWrv5qPdunVF380WNcU6DrXh1PJ0o4LjKSSvoSyMlc/wCK9ixo74Ne5XrsiL8bYsQAiaOrMJk57cNTMULM1O14DZiissc6Gxtv2T0Rd2v22XlXrsqL3EscWUwuPzcLIsjQrX4o5GTMZahbI1r2ru16I5F2ci9UXvQipNB4neV1ZLeOfNkG5OV1C7NB2s6d6vRrkRzXfbMVFa7vVFXqBYgV1cBmazlWpqaxIkmTS5IzIVYZkZWX49SLs2xq1vpa96vc1e9XJsieEs6qqfHo4vIpJlOzRYbMldYaC90io5r+eZvpYita5OqOT4oFjBXmaukie1t7AZiismSdjol7BtlJE+0sKsDpOSF39KTlVv2yNPbR1xgMgkfZZWs10lt9COOd/ZPfYZ8aJrX7Krk79kTu69wE4B3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmyOSqYfH2b9+1DRo1YnTT2bMiRxRRtTdz3uVURrURFVVXoiIRMk+YzNt0dRq4alWtQu8KnjZK6/Dy88jY2o74JFVWs5npzdJNmJ5kgEhkM9j8Xdo07VuKG5fc9lWu53wk6sar3IxveuzUVV9X95E1ruoNQw1ZoqiadpWKsqyNuo2S/DKvSPZjVdEmyeeu7nehqtTqpKYXAUcBBJFTic3tZZJ5JJZHSyPe9d3OVzlVV36dN9kRERNkRESRAgaejKEM8Vq66bMZFtFlCW5kHI5Zo2u5lV0bUbEjnO85ysY3dUTps1qJPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTZp17nZeEQRz9k9JY+0YjuR6dzk37lT1nuAFeg0Dg6T67qNN+LSG6/IpHjZ5Ksck7/AI7pGRua2RHd6teitVeu2/UVtPZfHJjo62o7FiCGxJJZTJV45pLETlVUjR7Ej5OXua7Zy7J53N3lhAFeo3NTV5KEV/HULaSzyssWqNlzGwRIirE/s3t3cq9zkR3Reqbp3KWtqk3iuO9SyOGt5Bs7o616q7ePst+ftJI+aJi7JzN3f5ydU32XawgDkxOXo57HQZDGXa+RoWG88NqpK2WKRvra5qqip8qHWQ8+j8LYydXJLjYI8hVjlhgtQt7OWNkm/O1HN2XZVXfb19e/qcdXAZjCRwMoZqS/Wr0pIW1ssnaPmm3VY5HWE85Nviru126bL37qoWQFcj1f4vdHDqCp4llbTisT3Fk58e2RzkY6JthUbu5Hq1E52sVyORUT4yNsYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRevVsXSsXLliKpUrxulmsTvRkcbGpu5znL0RERFVVXuPeVq1PBqfUj8WyxXsU8UrJMlRmpLJzzORsldEkd5iKzbtFRu7kXsl3anxg6alG1mLrL+Shkpsh7SKLHOmbJG5OdqtmkRE25/MTlRFVGo5eqqvScAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1WqsN6rNWswx2K8zFjlhlajmPaqbK1yL0VFRdlRSC0lkUtXdSUfGE192Nya1nJNXSLsOaCGdsTXJ0ka1szdn/AC8q7q1VXq1i/ORaVy0mmW036gZWkdQZkGOdA+ZGqrGvRrmryqvTdHJtvv6D4x9x57q/i/xz41ZbT+exOEgwVVZbmVWKrPHLQ5YmwsghV0yom8zUeqPRy+dLsqJsjQ+5gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhzkY1XOVEaibqq+ggNCWH5DS9PIvt3biZLmyES5CDsJoopnLJHEsfezkY5rNl87zfO87c/WvLvi7ROesdterqylNyzYyLtbUaqxUR0TPtnoqoqJ60Qma0Pg9eKLtHy8jEbzyLu52ybbqvpUD2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmqM3bgu08TjXshu245JnWZGc7YImK1HKje5Xqr2o1FXZPOcvNy8roV2Izrl39+eXb8ja1Lb/AK1z353+cjHfkmx/nQkmerYpd2LNIjfFd8RPfPNlwQnifO+2mY+b0f3YeJ877aZj5vR/dibBlj/LHpjoVQnifO+2mY+b0f3YrGkuDdXQuZ1FlcFnsnjshqG0l3KTxw01WzMiKiOVFgVE73Ls3ZN3Ku26qaEBj/LHpjoVQnifO+2mY+b0f3YeJ877aZj5vR/dibAx/lj0x0KoTxPnfbTMfN6P7sfptfUeNb29fUVjKys3clXJQV2xy/g80UTHMVeqI7rsq7q1yJyrMgY+dmNI6FUthMtDnsPRyVdHtgtwMnY2RNnIjmoqI5PQqb7KnrO0q3Cz+bnTn9hi/wAJaTzb6zFi8tWY4RMpO6QAGpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDN4PpDIP8JyNTfs29tiWc9lm8jU3Yn9/X1JupYiu8QZ/BtJXJPCcjU2dD8Nio+ew34VieanqXuX8FVLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSc7/ORjvyTY/wA6EkyMzv8AORjvyTY/zoSTPV/yWPL6yynuAYB7qnStTMSaazNyfCZSDCRXrUmks9fWpFlI+RnPJG9F6SxbJyuVrmp2vVW77mVX5KvGfiNHDduafwummaVxWR05ita1bE7ErSxvWaWLktwp2rHcrHPVXu2a3ZUTdV0zapNGL7UB8g6m0xRytTQ3D/N5HTOq7GP09YzHvy1LPP4EtN03LGkEbLCLI9Gcnwrpd2tajt1V5G8N8XV4tu9znFqmR2frv05nEsNnkc5ltIpK0bWy9fhETlaqo7fdWpvuMQ+0Cuaf13Q1JqzVOnq0Nll3Tk1eG3JK1qRvdNA2ZnZqjlVURrkRd0Trv3p1Pn3E6Y4fal4m8SKfEh2PhfpyxWqYXHZK4taDHYptWN0ctdvO1G8zlk5pG9UVqJum2xF604b6d1dqn3SGYyFR1jIYipUsYy0yxI1acrMQx7JYuVyI16Oa3zu/ZNu7oMUj65BXeG+Us5vh3pbI3JFmt3MVVsTSL3ue+FrnL/eqqWIzHp4Wfzc6c/sMX+EtJVuFn83OnP7DF/hLScvaPfW/Ofms8ZAAc6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArvEGfwfSVyTwnI1NnQ/DYqPnsN+FYnmp6UXuX8FVLEV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPav1aW3hFmGvu1z/AIWRG+a1N3L19CJ1VfQB0Ar1fiBgL0lNtHIsyfhlR96s/HMdZjmhb3va+NHNXfbZOu7l6Jufmrq21kUpOp6cyzobVWSx29pkdZsLm/FilZI9JGvf6NmKifbK0CxgrcdnVl2GJfAcVilkoPc7trMll0FxfiNVrWsR8ad7lR7VXuRE+MeUwWettb4ZqRYVfjFqzNxlJkKJaXvtRdosqt2+1jcr2p9tzgWM48jmKGHrz2L96tRggidPNLZmbG2ONvxnuVVREanpVehEu0NRs9b1zJ5FX4vxTM2xflSKeJfjSPhY5sfau9MqNR23RFRFVDrpaQweOnbPWxFKKw2oyh26V29qtdnxIlftzKxPQ1V2A45+IGDYljwezLk3w0WZHkxlaW26SB3xHR9k13PzehG7qqddtuosaoyD0ttoaZyVp8dNlmF87oa8U73f+Tu5/O16J1dzMRE7t1XoWMAVy1Lqy028ypBh8bvWjWnYsSy2lSdf4xJYmtjTkb3Jyybu/BF3T+ayTcjHJqexRiswRRwrjKkMclZ6fxkjXSpKi83ds5F5UXp184sYAzq/h2UOKsNpLNueSziJEc2ew58bOSSFqcjFXlZv1VeVE3Xv9BYiMzybcR8cvrxNjb5fhod/+6fnQkz1f8ljy+ssp7kLqXRGnNZtrt1BgMXnW1nK+FMlTjsJE5dt1bztXZeid3qPxqLQemdXwVYc7p3E5uGqu9ePI0YrDYV6dWI9q8vcnd6idBhRig8xoTTWoWY9mV09iskzHKi0m3KUUqVlTZE7PmavJ3J8XbuQ9lLR2Axluvap4PG1bNZZlgmgqRsfEszkdMrXIm7e0ciK7b4yoiruTAAgdQ6A0vq27VuZzTeIzNur0gnyFGKeSHrv5jntVW9fUda6YwyrlFXE0d8q1GZD+DM/hjUZ2aJL0+ERGebs7fzencSYA9NOnBj6kFWrBHWqwMbFFBCxGMjY1Nmta1OiIiIiIiHuAKPTws/m505/YYv8JaSrcLk24c6b+WjEqKi7oqcqbKWk5O0e+t+c/NZ4yAA50AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXeIM/g+krknhORqbOh+GxUfPYb8KxPNT0ovcv4KqWIrvEGfwfSVyTwnI1NnQ/DYqPnsN+FYnmp6UXuX8FVLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbf1LiMVLVju5SlUktWUp12T2GMWadU3SJiKvnPVOvKnX5Dgra5x+QfUSjBkL0di3JT7aGjL2cT2fGc9zmojWehHdyr3bgWEFdqZ3PZDwB8emnUIZbEkdpuTuxslghb8WRrYe1a9Xehqubsi9VRegp1dUzrQku5DGVOzsSPtQVKr5Emh/wDLY2Rz05HJ3udyrv3Ije8CxH5c9rVRFVEVV2Tde9Sv0dJTwrjJL2ocvlLFGWWXtJZY4Gz8++zZGQsYx7WIuzUVPQiqrl6nnG8P9O4rxU6LEwTT4p0z6Nq5vZsVnS/xqslkVz0V3cq83VOncB+62u9PXrGKhqZipedlXTMpOqSJMydYd+12czdvmqiou69F6d/Q9WN1mmZTDS0sJmX1Mkk6rYtU1qeCJHuiLPFOrJW86ps1EYqrvuqInUnq1aGnAyGvEyCFibNjjajWtT5ETuPaBXMfkdT324mWbDUcXFKyZb8M95ZZq7k3SFrEYzkfzd7l5m8vcnN3oo4nUki4yXJZ+v2kMMrbkONx6RRWJHb8jm9o+RzEYm3TdeZU3Xp5pYwBXKOiYYExj7mWzGVs0YpYkms3nsSftPjOmii5IpHIi7NVWeb9rsvU9+K0Pp/CMopSw1KF1GF9atL2KOkiicu72Neu7tnL1VN+q95OADwiI1EREREToiIeQAAAAAAAAAAAAh9Q6e8deDzwWFpZCsqrBZRvOiI7bmY5u6czHbJum6dyKioqIpArgNXovTKYRU9a0Jk3/wD8xdgdFi/t2IwxSnjEStVI8Qaw++eD+YTfXDxBrD754P5hN9cXcGzarzlGkLVSPEGsPvng/mE31w8Qaw++eD+YTfXF3A2q85RpBVnDKOt0z8lCW5p+OutZs8E/YSK+VyOVJW9n226IzeJebqi9pt026yHiDWH3zwfzCb64lNYozHrjc3y4mF2PnRJruVd2fYVpFRs3ZyfauXzF2XzXcqIu3RUsY2q85RpBVSPEGsPvng/mE31x+2aV1FeRYcjmaMVR/STxdUkjmc30o17pV5N03TdEVevRUVNy6Am1XnhpCVeqpVho1Ya1eNsUELGxxxtTZGtRNkRPxIh7QDlma75QABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFd4gz+D6SuSeE5Gps6H4bFR89hvwrE81PSi9y/gqpYiu8QZ/B9JXJPCcjU2dD8Nio+ew34VieanpRe5fwVUsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI/O6hxmmcbPkMtegx9OBnPJNYejWtTdE9Pf1c1PlVyJ3qgEgCt5HVN/nytbEafuZC7TjidE6yqVatlz9vNZK7dV5Wru5UaqJtt1d0P1kMfqTJ+NoI8tWw8EiwJQsU63a2IUTZZuftN2OVy7tb5nmp1XmVdkCxETltWYXAxvfkMrTptZNHXVJZmoqSSLtGzbffmcvcnevoOS5oehlHZJMjPeyNe9NFM6rYtP7GJY9la2NrVRGt3TdU68y9+5K0cPQxk1uanRrVJbcnbWJIImsdNJttzvVE8523pXqBFTayY5bLaGIy+TlrXWUZWR03QIjl+NI18/ZtkjanVXsVyd6Ju5NjxLd1Ra7VK2Lx9Hs8gkSPuW3SdrTT40qNY3zXr3NYq/Kqp3FiAFebhM7Yka61qRYWx5J1pjMbRjiSSr9pVl7XtVd63SM5HO+15O48Q6ExyeDutzX8lJXvOyML7t2V/JKvdsnMicrftWbcqd6Jv1LEAI/E6dxWBikixmMp46OSZ9l7KkDIkdK/48io1E3c70u719JIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxZvFw5vD3sfYgrWobUL4Xw3IUmhejkVNnsXo5vXqi96HNpPKuzemcZdltUrtiWBvbz45yurumRNpOzVevKj0cib9enXqSxXNEytZBl6KWMdM6jk7ETosbF2bYEe5JmRyN9EnJKxXL9tzc32wFjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFd4gz+D6SuSeE5Gps6H4bFR89hvwrE81PSi9y/gqpYiu8QZ/B9JXJPCcjU2dD8Nio+ew34VieanpRe5fwVUsQAAAAAAAAAAAAAAAAAAAAAAAAAAAACD1vrXDcOdK5HUmoLT6WGx7EltWGV5J1jYrkbzckbXOVN1TfZF2TdV6Iqgc7snLqm9kqGLvsgo1Emo3bUCKlmG0rGOakXM1Wea2TmV3nJzcrdujkTtxelMViby5CGnG7KurR05clMnPamij+K18q+c5EXddlXvVV71UyLg97q/hrxP1dPprA63bqPM37E1mlViwtur2VdrEdyOe+JrVVvK5eZypvuid+xugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmn5ms1XqmqlnHvf21eyterFyTxo6BrEdOv26u7JeV39FqN+1QsZXaFnbX2aqrZx7tsdSmStFHtbZvJZar5XfbRu5ERiehWS+tALEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxFd4gz+D6SuSeE5Gps6H4bFR89hvwrE81PSi9y/gqpYgAAAAAAAAAAAAAAAABC5zVdTB2IqyxWLt2RvaNq04+eRGb7c7t1RGpv03VU32XbfZdpooWJf2uqdYvcm7mZGKFF/ASnXcifne5f71Om4u7NuZm1wiK/GI+qw7fKJJ7LZ7/kr/AFw8oknstnv+Sv8AXHaDqw3WT4z1WscnF5RJPZbPf8lf64eUST2Wz3/JX+uO0DDdZPjPUrHJxeUST2Wz3/JX+uHlEk9ls9/yV/rjtAw3WT4z1KxycXlEk9ls9/yV/rjjzGroM/ibuMyGjs3aoXYH1rEEkdflkje1Wuavw3cqKqEyBhusnxnqVjk+VPch+58X3N+odY5i9gcrk7l+w6ri5omQq6KgjuZOfeVNpHLy8yJuicibKu59PeUST2Wz3/JX+uO0DDdZPjPUrHJxeUST2Wz3/JX+uHlEk9ls9/yV/rjtAw3WT4z1KxycXlEk9ls9/wAlf64eUST2Wz3/ACV/rjtAw3WT4z1KxycXlEk9ls9/yV/rh5RJPZbPf8lf647QMN1k+M9SscnIziKxvnWdP5upCnxpX145EanpXljkc5f7kUtNazDdrRWK8rJ4JWJJHLG5HNe1U3RUVOioqddyBObhm5fe/bj7mRZO9Gxv9FvhMion4uvd6O7uNV7d2MGOzFKTH1TuWwAHCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXYJ1TiFdh8Lx6ouLgelRrNribSzJzud6Yl3RGp6HI/1liK42wnlElg8Mo8y4pj/AARIv4V/HOTnV/3P0I317r6QLGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxFd1/L2Gk7j0s5Cns6L4bFs57DfhWfFT1L3L8iqWIAAAAAAAAAAAAAAAAAUHCfZPrT8rR/6GqX4oOE+yfWn5Wj/ANDVO7svC35fWFjvTYBhVu7reX3XE+Po5vHRafj0zVtvx9qrPJ8Ctt7ZOTaZrWzuVjtpOVU5eRFavLuuyZojdQYpw94k671pHq7MW3aXxGnsFlctjY/CI50knbWkkZHNJL2nLCxFa3n8126NeqcvRCt8OvdI53PalzGEyUmDzCt0/YzuPymGoXatZ/Yua10apY/jmr2jFSSJ3KqIvcuxjigfR4MC0Nxo1zcl4W5DUdLAOw2vKu8EGKZM2xSm8DWyzme96te17WOTZGt5FVE5nom61C1xa1JxU9z9xanz02naUtfTeSbY09TZPHk8VN2UiJHZbK7zk5UXz0a1FXuRU6jFA+rAYHxA4qZ3h9pnR1bA5TTcFmxh2T+L8nSu3rlhWxt/i4qu7mR+hZXIqIu3Qr2c4jaz4j6g4CZzSmSoYCHUdO7bfQyEE1iFJkpq5ySpHNH2jWoqozuVHed8gxQPp0Hzhrn3SGo6+tNS4fS9Oo+HTkjas62cDlL637PZNkdHHJUjcyBE52t3erl33XlRNlXdtGZ+XVekcLmp8fYxE+Qpw2pMfbarZqznsRyxvRURUc1VVF6J3FiYkTIMq1txC1Za4oV9B6IrYeO/Di0zGRyecbLJBDC6V0UUTI4nNc6RzmPXdXIjUb6VXYrPDvjzqXVOV4e08lRxVd2fv5+neSq2VUjSjI5kXZOc708vnK5OvoRvcMUDewfOup/dM5XAe+Kg2hUly7dYS6axXJUtTsZCynFZfPNFCj5ZVaj3pyxom+7fiojnEZY90prqlpfKvTT1S5lqmWxVKnenxWQxlLIMtz9k5jY7LWyRyMVOq7vanO1evVCYoH06DJ4OIGqtG8Q8FgtcWMFJjM1j7ktfIYurNXbFarqkjon9pK/dqwK5yL0XeJ/o6JZODmscnxC4c4jUuVqQ0ZcqkluvXha5vLUdI5ayu5lVVcsPZucvRN1XZEToWouhycM/5EyH5Wvf6h51nJwz/kTIfla9/qHmV57m15x9V7luAB5iAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFdSz/APUJa/htLbxWkngXZfwr+OVO05/ufo5fX1LEV3t18oSw+F4/l8V8/gvJ/DP43bn5vuXo2/pAWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxAAAAAAAAAAAAAAAAACg4T7J9aflaP/Q1S/FBwn2T60/K0f8Aoap3dl4W/L6wsd6bM61TwuymR4n47W2A1K3BXo8emKv1p8e23HbqpN2rUbu9ixvRyvTm87o7u6Gig2TFUZhS4GVG8M9a6MvZSWzU1PdyduWxBF2T4EuSvk5WornIqs59t16O27k32ITH8BNQv1JSzmb11HlbVfCW8B2MOFZWg8GmazZzWpKqtkR8bXKquVrkTZGs7zagTDAy3H8EVoYXhNQTNc66CbGiS+CbeHctJ9Xu5/g9+fn73d23ykGz3OV/P5bOZHWusnakt5HTtnTLZqmLioPbWnVFe+RWuckkibJyrs1qdfN6m3AYYGKV+AepMfkcTlaXEDsM1Fg2aeyN52FjetqtHK98TomrJtDK1Hqiu89rtkVWdNjxV9zpfw2i+HuNw2r/AAHO6Ikmbj8tLjWzRywSMfGsUsHaJuvZuanMjk85vMiJvsm2AYYGPWeCWpsXqbL5rSev3ablzzYX5mF+HjtxzWmRpGtmBHPRIXua1N0Xnaqom6LsWnL8QcxhcjNRi4f6pzccOzUyFJ2PSGfom7mpJbY787U7i8AU5DIczw8zut9T4viBp7J3uHGpkovxVynl6EF5tiqkqvY2SOOdWo5HK5zXtk32eqKnehSOE/BjUN3h/pe8uUn01rHTmfzdiC1ksX2jLEdi1O1/aV1dGvLIxWvarXJt0VN0PpUEwwMIh9zFZbislLLrWy7Vcmp3aqoZ+OhGx1Sw6vHA6N0PMrZIlaxyK3du7XIne3dbHluEeo9WaUrYzU2tWZa9BnaOYbbhxDK8TGVpo5OwZE2RVRHLGvnOe5UV69FREQ1QFwwMO91Ro6zxS0/g9FY7GZWTJX8jDOzMU4uWvjYWu5LL5ZlVEaqwSTNRibucrtkTvNqoUYMZRr06sTYKteNsMUTE2axjU2a1PkRERD3gtN9QOThn/ImQ/K17/UPOs5OGf8iZD8rXv9Q8t57m15x9V7luAB5iAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFd7ZfKGsXb4zbxXzdhyfw7+O25ub7l6Nv6RYiupIvlDWPwjGbeK0d2HL/AA7+OXzt/uXo2/pAWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxAAAAAAAAAAAAAAAAACh5FrtKagzFuzDO/HZSZlptiCF8qRSJFHC5j0aiq1FSNrkcvTq5FVNk3vgN91eezmd1YncsM79/+D/rM3zSb6A9/wDg/wCszfNJvoGiA6dousk6x+1dzO/f/g/6zN80m+gPf/g/6zN80m+gaIBtF1knWP2m5nfv/wAH/WZvmk30B7/8H/WZvmk30DRANousk6x+03M79/8Ag/6zN80m+gPf/g/6zN80m+gaIBtF1knWP2m5m0HEnTtpZUhvulWJ6xyclaV3I5O9q7N6L1Tp8p7ff/g/6zN80m+gfrhK1sOT4h19/hodTzrI1e9qvrVpW/nZIxf7zQhtF1knWP2m5nfv/wAH/WZvmk30B7/8H/WZvmk30DRANousk6x+03M79/8Ag/6zN80m+gPf/g/6zN80m+gaIBtF1knWP2m5nfv/AMH/AFmb5pN9Ae//AAf9Zm+aTfQNEA2i6yTrH7Tcz1muMXPu2t4ZcmX4sMFKZXuX1J5uyfjVUT1qhZNFYaxhMEkVtGttz2J7crGO5kY6WV0nJv6eVHI3f07bk8DVeX8W7OCzFI86/SEryAAciAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFcbKi8RJI+2xiqmKa7sUZ/D03md5yu+49NkT+kiljK7DJzcQ7cfaYpUZi4XLG1v+0G7zS9XL9xXl81P6SPAsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArvEGfwfSVyTwnI1NnQ/DYqPnsN+FYnmp6UXuX8FVLEV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDn0Xh9qy1qtI0972RhZHm3ovWo+JFSO4qelnIvZyL9q1sbujWPVL3FKyeJkkb2yRvRHNexd0ci9yovpQ/Zn8uhczo2eS1oa5XjpOVXyaYyiuSi5f8A+nlaiuqKq7bojZI+/aJHOVwGgAoMPGTDY2aOpqyGzoi85zY0TOI2OrK93ckVpFWF6qvRG86P7t2oqohfI5GyxtexyPY5Ec1zV3RUXuVFA/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV6nK+TiBl2driXRRYymqRxfygxzpbO6y+qFUa3s/wmzFhK5hJHWNY6lk7XEysiSrW2qJvcjcjHSKywv4pWuY30I9V+2AsYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArvEGfwfSVyTwnI1NnQ/DYqPnsN+FYnmp6UXuX8FVLEV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9divFbgkgniZNDI1WPjkajmuaveiovehQ5eCWn6bpZdNz5HRNiR/aK7TlnweFXdd3LWcjq7lVVVVV0S7+k0AAZ4uN4m4BXrUzGA1dXT4kGVrSY2x3/bWIe0YvT1QN/YXinlsMjU1HoDUNBqJ59rExsysH/xbA5Z19fWFO/8e2hgCkYrjboTL3fAY9U46rkf6hkJfA7Xft/Ezcj+/wDBLs1yPajmqjmqm6Ki7oqHJlsNj89TdUydGtkar/jQW4WysX8bXIqFIfwC0RAquxOLm0u/dXIumr1jFpuvpVld7Gu/E5FRfUBoYM7XhxqrF9cLxKzCNT4tbOUqt+FP72xxTL/fKp+u34p4qR3PV0lqWFN9nRTWcVIvq2a5tlFXu73IBoQM7Tifnsci+OuG+o6rWputjGyVb8K/iSObtV/RIP8A9QOha3TK5ebTS+n3yY+zikT/AOVmONu3you3qUDRAReC1RhtUV+3w2XoZaDbftaNlkzdvXu1VQlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXdGWEyMGUyLZ8baht5CZYp8axUR7I9oU7Ry/HkTslaru7ZqInREOvVmajwGAs2n3IaMr1ZWrTWGOezwiZ7YoGq1vV3NK9jdk6qq7HXiKC4vF1KiuZI6GJrHPjibE17kTq5GN6N3Xddk6dQOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPHeeQBT89wd0JqedLGV0dg7tpOrbUuPi7Zq+tsnLzNX5UUjHcEMPVXmw+a1Rp9yIiI2jnrL4m7Jsm0Mz5Ik/uZ19JoYAz1dFa7xsquxnEZ1yPfdItRYWCyiJ6t6y1l+Tdd19e5+UyPFTFIvb4PSuoY075KeSsUJF/FE+GVv55ENEAGeJxUy+PYq5rhzqigjVRFlptrZCNflakEzpFRPljRevcE90BoODbxnnF04qrttqOnPitl/8A3LIzQzwqI5FRU3ReiooEdhdS4jUkHb4jK0srBsi9pSsMmbsvcu7VVCSKbnODOg9SWPCclo7B2radUtuoRJO35UkRqOT+5SNTghiKK82GzmqcA70Np5+zLE38UM75Ik/uZsBogM795WvsWi+LOI6X9u5NSYOCz09SrVdW/P8A9zy3JcU8W5EsYLS2fhRfOlp5OejL+NsT4ZWr+JZU/GBoYM78quVx7V8dcOtU49Grss1SOvkI1+VqV5nyKn440X5D2N496EjlSPIZ1MBKqc3JqCrPi1Tpv/8AxLI/QBoAI7DaixWo6yWMTk6eUrr1SWlYZMz87VVCRAAHLlLzcXjbdx7VeyvC+ZWp3qjWqu3/AELETM0gdQM0oaarakx9XJZtH5DIWomTSK6aRIo1c1F5Y2c2zWpvsmybr3qqqqqvu8n2nvvaz9I/9p3z2a7jdatzXy/uypDRQZ15PtPfe1n6R/7R5PtPfe1n6R/7Rs91nnSP3G5ooM68n2nvvaz9I/8AaPJ9p772s/SP/aNnus86R+43NFBnXk+0997WfpH/ALR5PtPfe1n6R/7Rs91nnSP3G5ooM68n2nvvaz9I/wDaPJ9p772s/SP/AGjZ7rPOkfuNz4p442uNMfu6svgOFeeylCfIx1cgtdJOfHRtWpFA+xPC9HRKjUjRvM5iu3azbzkaf0K07UyFDT+Mq5a8mUysNWKO3ebEkSWZkYiPkRjejeZyKvKnRN9ijM4Z6YjsSWG4eFs8jUa+VFcjnIm+yKu+6om67fjU9vk+0997WfpH/tGz3WedI/cbmigzryfae+9rP0j/ANo8n2nvvaz9I/8AaNnus86R+43NFBnXk+0997WfpH/tHk+0997WfpH/ALRs91nnSP3G5ooM68n2nvvaz9I/9o8n2nvvaz9I/wDaNnus86R+43NFBRcG52mNT0MVWklfjMhFMqQTSuk7CWNGqisVyqqNc1Xbt7t0RU23dvejlvbv2cxvrE8EkABpQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDmo9qtciOaqbKi9ynkAU3McGtB5+z4Vf0fhJ7iIqNuJRjZO1F7+WVqI9N917lI1eCWLponibUGqsArU2alTO2Jo2/iisOljT+5pogAzS9pnW+l6Vi7BxPry0q0bppptV4WvKyONqbuc99Z9VGoiIqq5eibbqfAXuVtVe6Nx65eWvp/Lag0Vl0sWci7POdFEiyczpbEM0q78/nOcqJvzr3oq7Kf1IIjV/2J5r+xT/5bjbde8s+cLHFB6e/kDGf2WL/AAISBH6e/kDGf2WL/Ah2WJ2VoJJpObkjar3crVcuyJuuyJuq/iTqejb/AKpJ4vYDGeHnuotL6v4f5jVeUbcwFPEy2FuLPj7axxwssvhjckiwokjnI1quYzdWK5UciKiljtcftD0sD46lylrxattKUU7MVcf4RKrO0TsWpEqzNVnnI+NHNVPSasUI0MFDscdNCVdI4nVEmooPEWVteBU7bY5HJLY5ZF7LlRvM1/wUicrkReZOX4yoi+tnHrQjtK3tROzqQ4yjbbQspPUnisRWHcvLCtdzEl53czdm8m6ou6blrA0AGD8U/dQY3AYbSjtKy+E3NSXXVoLd7DX5Ya0caSdq98McaSPejo1Z2SK126q5dmtVS56h466P4f3YMNqvUVavnIq8Ul7wWpO+Curk255XNa9K7HLure1cnT0r3kxQNFBRs1xs0bgdULpy1lZH5zsoJ0o1KNizIsUquSOREijduzdq7uTo3dOZU5k3h7nunOGmPsPis6mbAkduWhJO+lZSCOzG5zXwvl7PkbJux2zFciuTZWoqORVVgaiCs6I4k6d4iR33YG++zJQlSC3XnrS1p4Hq3maj4pWte3dF3RVTZU7tydyWSqYbHWb9+zFTo1Y3TT2J3oyOJjU3c5zl6IiIiqqqUdIM20/7ozh5qm14Pjc+6aZas15jJKFmLtK8TUdJKznjTnYiKmzm7ovo3LFHxL03LQ0ndZkt62qljTDv7CX+FK+F07OnLuzeNrnefy923f0FYFnBn8HHvQVnVLdPR6hidkn2losd2EyVn2EVUWFthWdk6TdFTkR6rum22/Q4sl7pPh3irOXgnzk7n4ieatkXQYu3Mym+LftEleyJWsROV2yuVEXZdlUlY5jTQQ1vWGHo6kxOAluJ42ysE1mpXZG9/aRRcnaPVzUVrUTtGJu5U3VyIm6kyUQ1n7PNL/it/wCWhfCh2fs80v8Ait/5aF8NXav8nl9ZWe4ABxIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK7xAn8G0lck8JyFTZ0Xw2Kj7Sw3eViea30ovcv4KqWIrvEGfwfSVyTwnI1NnQ/DYqPnsN+FYnmp6UXuX8FVLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIjV/2J5r+xT/5biXIjV/2J5r+xT/5bjbde8s+cLHFB6e/kDGf2WL/AhIEfp7+QMZ/ZYv8AAhIHo2/6pJ4vkLJ4vOt9zTxH4av0lqF2fqz5GeJzMZK+tdjlySzRrBK1FSRVZKi8rfOTlduibGuce589UsaOr0Gahi0g+1M3OP0jA999rUi/g7G9kiyMjV+6OdGm6bNTdEVTYQacKPkLRWjc9Xw2mqrtNaiqNrcWH5bs8pDJNOyjLXneyeWXdyOT4RqOerl2eqo5eYs2sdIwT6z4u2c/pzVFvFWsjgrWPuacqSOtxzxVkRLVZWp5yxOaiKrUdt3Ki9x9LgmEfM2Bj15qp3CK9qXGZOzNjtW3lS5ax/YWVx6VLTK9i3ExOWF7uZqKio1N1b0RVGokzGgcnxmw8ui87qefWkjrOJuY2itivYSSkyuleeVPNhSN7HbrIqJyu3TfuPpkFwjA+BHD7MaJ4lZGLL1JpHUtGafxSZRYndjPNC2ds7Y5FTZ2yoxVRF36t370Ko3Rme8j0FJcFkfDE4neMFr+Bydp4N46WTt+Xbfs+z8/n7uXrvsfU4GEZZobDX6fuguKeRmo2YMddoYRta3JC5sU72MtJIjHqmzlbzMRdlXbdu/eh0+6Q0blNf8ABHVeCwsKWsnZrsfDVV/KlhY5WSLDuvROdGKzr087qXDVeitP66oRUdR4WhnaUUqTMr5CuyZjZERURyNcioi7Ocm/yqRemeEOh9F5RMlgNI4XC5BGLGlqhQjhk5V705moi7LsWncMJzmrV4scYtFUqmm87pmd2ls/VSDP459LaSRlVvIzm+MjVRN3N3b1TZV9HJgX53NYr3P+mk0hqfGXNLzw1svctYuSOvTkixk1fdJFTZ7Vcu6PbuzuRXIrkRfpe9pHE5LU+K1DZqdpmMXDPXqWe0enZRzcnapyovKvN2bOqoqpt023UmDHCPkDg9wyoUsLpzQms9KcRJc3jLbWTyMyF9+Bc6KVZIrTXdskHIqtY/lROZHL8Xpua3wc0N2+n+KeKzuJmr085qvMOkiswOj8KrTKjEem6JzNc3ojk6KidDZDjzGJrZ7EXcZdY+SncgfXmbHK6Jyse1WuRHsVHNXZV6tVFT0KhYs0Hz37lLD5zJZfUGY1KqT29LxpoTH2N9+3ipyuWax+OVyxIq+uE+kCK0tpXEaKwNTC4KhDjMXVarYa0CbNbuqqq+tVVVVVVd1VVVVVVUlSxFIoIaz9nml/xW/8tC+FDs/Z5pf8Vv8Ay0L4a+1f5PL6ys9wADiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDP4PpK5J4TkamzofhsVHz2G/CsTzU9KL3L+CqliK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACN1LWkuacysELVfLLUlYxqd6uVioiEkDKzOGYtR3CkaWnjtaZxM0TkfG+pE5rk9KKxCUPVe4fUbNqWetdyOLWVyvkipWVbGrl6q5GORWtVV6ryom67qvVVU9Hk5Z7Q5350z6B6U3lzanFipXwZbnYDj8nLPaHO/OmfQHk5Z7Q5350z6BMd1m+ElI5uwHH5OWe0Od+dM+gPJyz2hzvzpn0Bjus3wkpHN2A4/Jyz2hzvzpn0B5OWe0Od+dM+gMd1m+ElI5uwHH5OWe0Od+dM+gVPRWnbed1Frynb1Fl1gw2bjoVOzss5uyXH0515/N+N2k8nq6cv41Y7rN8JKRzXgHH5OWe0Od+dM+gPJyz2hzvzpn0Bjus3wkpHN2A4/Jyz2hzvzpn0B5OWe0Od+dM+gMd1m+ElI5uwHH5OWe0Od+dM+gPJyz2hzvzpn0Bjus3wkpHN2A4/Jyz2hzvzpn0B5OWe0Od+dM+gMd1m+ElI5uOVqy6/04xnnOjhtzPRPQzlY3f872p/eXsicDpmnp5sq11mnsTbdratSullft3Irl7kTddmpsibqu26rvLHLf3kXkxFnhEU+Mz9UkABzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK7xBn8H0lck8JyNTZ0Pw2Kj57DfhWJ5qelF7l/BVSxFd4gz+D6SuSeE5Gps6H4bFR89hvwrE81PSi9y/gqpYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ9wyRqax4sK1d1XU8Ku+RfE+N+VfRt6vxeldBM/wCGXN78eK+/Jt75otuXl328T43v267779/Xbb0bAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArvEGfwfSVyTwnI1NnRfDYqPnsN+FYnmp6UXuX8FVLEV3iDN4PpK5J4RkamzofhsSznst+FYnmp6l7l/BVSxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzzhg1E1nxaVHI5V1RCqom/m/7HxnRf+/T1mhmecL0RNZ8WtlVVXVEKr8n+xsYBoYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACu8QZvB9JXJPCMjU2dD8NiWc9lvwrE81PUvcv4KqWIrvEGbwfSVyTwjI1NnQ/DYlnPZb8KxPNT1L3L+CqliAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvag1NPRutxuMqx3cmsaTPSaRY4oY1VUa57ka5fOVrkRERd+V3ciESua1jv0rYPb/3pvonTZ7PbtRXdHnK0XcFI8dax/q2D/TTfRHjrWP8AVsH+mm+iZ7Lb5xqtF3BSPHWsf6tg/wBNN9EeOtY/1bB/ppvojZbfONSi7gpHjrWP9Wwf6ab6I8dax/q2D/TTfRGy2+calEtxC1Dk9J6IzWaw+HTUGRx9V9mLGLYWBbPKm7mI9GP2dyou3mruuydN9z5C9yb7tO3xj42ZvTlfh+/HRahuyZi3eTKdsmPbFQggRrmpXbz8zqzE3VyKna7deVEX6n8dax/q2D/TTfRMj4N8AJuCOsNZ6iwVPDLa1JZ7ZWPfIjacW6uWGLZnxOdVXr6mp6N1bLb5xqUfSYKR461j/VsH+mm+iPHWsf6tg/0030RstvnGpRdwUjx1rH+rYP8ATTfRHjrWP9Wwf6ab6I2W3zjUou4KR461j/VsH+mm+iPHWsf6tg/0030RstvnGpRdwUjx1rH+rYP9NN9E/TM/q2Dd8uOxFljeqxQWZGPcn4KuYqb/AI9k+VBstvnGsJRdQcWGy9fO42G7VV3ZSbpyvbyuY5FVrmuT0K1yKip60U7TkmJszMTxQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDN4PpK5J4RkamzofhsSznst+FYnmp6l7l/BVSxFd4gzeD6SuSeEZGps6H4bEs57LfhWJ5qepe5fwVUsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAURq78Q9RfJUpJ/nEwQ7P5w9Rf2Wl/+YmD1rfd5WflDKeIADBiA4WZzHy5qbEMuwPykMDbMlNsiLKyJznNa9ze9GqrXIir38q+o6LluLH057U7+SCCN0sjtlXZqJuq7J1XonoA9wI/T2foaqwWPzOLn8JxuQgZarTKxzOeN7Uc13K5Ecm6KnRURSQAAAAAAAAAAh8vq7E4HNYPE3rfYZDNzSV6EPZvd2z44nSvTdEVG7MY5d3KidNk69CYIAAKOXhov+xMgnoTLXtk/wD3Dy2lR4Z/yLkfyte/1Dy3HL2n31vzWeIADmQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV3iDOlfSVyRbORqbOh+GxLOey34VieanqXuX8FVLEV3iDP4NpK5J4VkKezofhsVH2lhvwrE81vpRe5fwVUsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAURn84eov7LS//ADEwQ7P5w9Rf2Wl/+YmD1rfd5WflDK1xYZrrF5DWPuk8Vpt2pM5iMCukrF6xTxGRlqdvKluJjV5mKitVOffmaqO6bb8quRc5VvFDi1qLiDa09fsUpsFm7OExbm6smoRUuwRqRvlppVkbY590kVZXrzI/ZOVE3PqF2kcS/V8eqFqb52Oi7Gttdo/pXdI2RzOTfl+Oxq77b9Nt9iral4BaC1dqaXUGUwDZcrPyJYlhtTwNs8nxO2jje1ku2yInOjuiIhomzMsWaaW0W+77q7L3svkMlFmIdK4m7PDRytiOq+ftbDJG9mjkR8O7N0Y5OXdzl23cu/Bw003kdVcItX6my+sNVWcilrOQVEizdiFlWKK1M1jWox6bqix9HO3VEXlRUaiIbdqThTpfVmqcXqTJY10mcxiNZWuwWpoHoxr0kRj+ze1JGI9OblfzN336dVO7CaDwWndN2sBj6Pg+JtPsyTV+2kdzOne98y8znK5OZ0j16L036bIiDCPlnD6m15xIn4daVpXLtmOPh/i89ZVNTTYizfsTJyPmfYjglklRqtTdu7U5pFV3N0RLTez+teA1HRusOIObluYqst7D5mOC8+1EkD1dLRnfuyNr5mujbA6Xkaru1Q1zN8BNCahwunsXdwW9bT9ZtPFyQXJ4LFWFrEYkbZ43tkVvK1qKiuXfbrupOP4caak0ZBpJ+Igk05C2NrMe/mcxEjej2b7ruuzmovVeqp1JFmR8zS2OJWQzOiNE2b1+TJ5jD3NVZOF2o58TK+xJYbtUjsMhle2OuyTl7GNGIqJuq7N2XfeCeG1ngNJWKOtrcVy7Hel8Ce2867K2ovKsbJZ1iiWR7VV6cysRVRG77ruS2veF2l+JsFKPUeLS86jIstWxHPJXnruVNnLHLE5r27psiojk32TfuIxdEZ3SOKx+H4fXMDgMLVY/etlcbYvPV7nq9zkelqNequVV5uZVVVXcsRMSKz7pbP3sDhtKK7KZHBaXtZuKvn8piXPZZgrOjk5ER7EV8bXTJE1z27KiL3puY7C7VLdH4uGrqrVNTHZrifDSxuYuXJ0u2MStdWInwnXkVWP5eZuzuVr1RVXdde4jcMtda+0myjlrGktQXa1+G5UY2HI4hsfKyVj1SaG1JI16pIiIqdETnRUdzJt54VcCreExLotaWmZRa+aizWJxsGSuWoMTJHFyNSOed/aybqr3Kj/N3cuzSTEzIqnFPDWlz9DQmkshrO5mMbiZMpNOmrpqUUEMkz0ZJPO5ssk8nO16NjVFajW7LsmxBcP8zmuNGoOFcOb1JnaUOS0BPk7zMNkpaKWbLbFaNJXdkrdl89y9Nu/buVUXfNZ8H9IcQMvVymexCXb1eFayTMsSw9pCruZYZUje1JY9915Ho5vVenVTPsn7lnT2Q11p57aLINFYjB3MfDj6+RtQ2Ip5rUcyKx7HI5I0akqbc6IiORqN5e5NmajKKc2V4gah4c4DJ6jyk6YnXOfwlbP1p0ZdsVYKU/K5ZUT46t3ic9qIq7KqKjupYXY/X+Y01q/S+AzubzUWlNZMikb42Wtlb2MWpHM6sy4vXna+bdHOciua3lVyG94vhNpHCQ6Xhx+EhpQ6YfLLiY673sbWfJG+OR2yO2ermyP3V/N1cq9/U487wQ0XqNmSbexMj1yOSbl7EkN6xDIttsKQpK17JGuYvZojdmqibb9OqjDI/fBfUWL1Tw2xF/D3ctep7Sw9pnXq68yRkrmSRzKve9jmubv1+KnVe9buROlNJ4jQ2n6eDwVCLG4qo1Ww1ot9m7qrnKqqqqqq5VVVVVVVVVVd1JY2RwHJwz/kXI/la9/qHluKjwz/AJFyP5Wvf6h5bjm7T7635rPEABzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK5xCnStpG7Itu/QRHQ/wjGR89hu8rE81PSi9y/IqljK5xCtJT0jdmW3foo10Pw+Mj7Sw3eViea30777L8iqWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIz+cPUX9lpf/mJg9GocJfrZh+ZxUDLsk0LK9qm+Xs1ejFcrHxuXpzJzuRUXbdFTqnLs6MXJagRVRNIX1T1+F1frT1opeRExMcIjfMRwinfLKd6aBC+M9Q+x9/55V+tHjPUPsff+eVfrS4PzR6o6lE0CF8Z6h9j7/zyr9aPGeofY+/88q/WjB+aPVHUomgQvjPUPsff+eVfrR4z1D7H3/nlX60YPzR6o6lE0CF8Z6h9j7/zyr9aRuJ1rks3ezNOnpXIS2MRbbRuNWzWb2cywRTo3dZNnfBzxLum6edt3oqIwfmj1R1KLYCF8Z6h9j7/AM8q/WjxnqH2Pv8Azyr9aMH5o9UdSiaBC+M9Q+x9/wCeVfrR4z1D7H3/AJ5V+tGD80eqOpRNAhfGeofY+/8APKv1o8Z6h9j7/wA8q/WjB+aPVHUomgQvjPUPsff+eVfrT9MuakseZHpaavIvRr7d2BI0+Vysc9234mqMH5o9UdUo7eGf8i5H8rXv9Q8txFaawaaew8dNZlsTK+SaaZU5e0lker3qibrsnM5dk3XZNk3XYlTz7+1Fu9tWrPCZJ4gANCAAAAAAAAAAAAAAAAAAAAAAAAAAAAACva/sOq6TuSMt3qLkdF8PjYe1nbvKxPNb6d+5fUiqvoLCV3iBYWrpO5I29cxyo6L+E4+Htpm7ysTZrfTv3L6kVV9BYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUHhs1W6v4pqrdkXUsSovLtv/ALIx3XuTf8fXu236bJfjPuGTEZrHiuqI5FdqeJV5m7Iv+x8anTr1Tp39Ou6ejcDQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFd4gzuraSuSNu3ce5HQ/wAIx8PazN3lYnmt9O/cvqRVX0FiK/rywtXStyVLV+kqOi+HxsXazt3lYnmt2XffuX1IqqWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGe8MXI7WXFlEXdU1PCi+aif/yfG+lO/wDGv4vQaEZ/wz5/fhxW51kVvvmi5OdOiJ4oxvxfk33/AL9wNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxLKyCJ8kj2xxsRXOe5dkaid6qoH7BVncUtINVU98uMdt6W2mOT86KPKnpD2kxvzhp0bPfZJ0llhnktIKt5U9Ie0mN+cNHlT0h7SY35w0bNfZJ0kwzyWkFW8qekPaTG/OGjyp6Q9pMb84aNmvsk6SYZ5LSCreVPSHtJjfnDR5U9Ie0mN+cNGzX2SdJMM8kHxh4oaR0VhrFHOa0p6YyMjIZ4423ImXVjWZGo9kbnI5WqrXNVUTbZHepS3aZ1fgta0H3tPZvHZ6lHIsL7OMtx2Y2yIiKrFcxVRHIjmrt37KnrPiz/xEeHmB4x6Sw2ptK5GjktVYeVKr61eVrpLNSR3cid69m9ebb1PevoN39zpR0NwL4Q4DScGosUtqCLtr8zLDfhrT+srt/T181F/otaNmvsk6SYZ5NzBVvKnpD2kxvzho8qekPaTG/OGjZr7JOkmGeS0gq3lT0h7SY35w0eVPSHtJjfnDRs19knSTDPJaQVbyp6Q9pMb84aPKnpD2kxvzho2a+yTpJhnktIKt5U9Ie0mN+cNOrG6/01mLcdWlncfYsyLsyFlhvO9fU1N91/uJNxfRFZsTpKUnknwAaEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABz5DI1cTTlt3rMNOpEnNJPYkSNjE9auXohXl4o6Raqouo8aip0X+ENNti6vLyK2LMz5QtJngtIKt5U9Ie0mN+cNHlT0h7SY35w0z2a+yTpK4Z5LSCreVPSHtJjfnDR5U9Ie0mN+cNGzX2SdJMM8lpBVvKnpD2kxvzho8qekPaTG/OGjZr7JOkmGeS0gq3lT0h7SY35w0eVPSHtJjfnDRs19knSTDPJN5vO43TWLnyeXyFXFY6uiLNcuzthhjRVREVz3KiJuqonVe9UMn4PcTdF5riBxGpYzVuCyF/J6iZPUrVclBJJaY3EUGudG1r1V6J2UiKqJ05Hf0VUtGqtW6A1nprKYHLZ3GWcbkq0lWxEthvnMe1Wrt6l69F9C7KfEHuJ+A2K4U8c9Vak1RmKMdfT0ktHBWHzNa24siOathnXq3slVv45FTvao2a+yTpJhnk/o6CreVPSHtJjfnDR5U9Ie0mN+cNGzX2SdJMM8lpBVvKnpD2kxvzho8qekPaTG/OGjZr7JOkmGeS0gq3lT0h7SY35w0eVPSHtJjfnDRs19knSTDPJaQVbyp6Q9pMb84aPKnpD2kxvzho2a+yTpJhnktIKt5U9Ie0mN+cNOihxD0xlLUVarn8dPYlcjI4m2W8z3L3I1N+q/IhJ7PfRFZsTpKUnksIANCAAAAAAAAAAAAAAAABTtdv8AC8pp7Fy+fTtTSyTxL8WXs41VrXetOZUXZei8qFxKZrP7LdKfjtf5SHX2X3v6T8pWOKQRNkAB0IAAAAAAAAAAAAAAAAAAAc9+hXydSStaiSaB6bK1f+ioveiovVFTqipuh0ARMxNYH70Bkp8vovDW7UizWJKze0ld3vcnRXL8q7b/AN5YCq8Lf5vsH/7H/wB1LUcfaIiL63Ec5+azxAAaEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUjOOTI8QIqs6dpDQoMtQxuTdrZZJHsV+39JGx7IvoRztu9SUIm9/Odc/I9f/OnJY9a1us2Y8IZSAAwYgAAAAAAAAAAAAAAAAAAAAAem7SgyNWWtahZPXlarXxyJu1yHuAiZiawHDy/NkdH0JbEr55WLLAssi7uekcro0VVXqqqjU3VeqljKnwt+wqr/AGi3/qZS2HJ2iIi+txHOfms8QAHOgAAAAAAAAAAAAAFM1n9lulPx2v8AKQuZTNZ/ZbpT8dr/ACkOvsvvf0tf9ZWEgVbiTq3IaJ0tNlcdi6mVlie1JGX8nHjq8TF33kkmkRUa1OidEVeqdC0macbuHGV4gVtMWMQmMt2cFlmZPxXm1elK6iRyMRsisa5UVqyI9q8rkRzU6erfPDcio433VMGW4c++Onp1L+Ri1JBpmfG0MpDPG6xK+NGPhsonJKxUljVFXlTqqLtsdGc90pa0bhdcO1JpLwDO6YbRldRq5Js9ezFbkWOGRLDo2cjUejkermeajd/OIWn7n/WT4Mo29b0+kl/W2L1YqUlmjjjZCsPbwI1WLuqJAiMdv56qqqkfcXLPcOdUx691xqXCpgLbs1iMdjqtPMrK6F6wyzrO2ZrW9GuZNs1UV3Xvbsmy6/5h76/F/M4/I6Jrak0tXw8Wpb0+Pbbq5dtyGGRIFmrq1zY287ZkZI1N+VUVqdF5ukPifdP4jU+m4Mhgsc/IXbOqm6Yr0nz9l2iufzJZ5uVV7Na29hPNXdE239JW4PcxZi5wV1LpSxksfgsrfzaZvEx4V0q08E9r43Njrq5Edy+ZIq7Nam8rtmoW3Ge50xWB4waa1bjJEq4nDYTxczFoq7eERsSGCfbuVUrvmjVei7cnf1L/ADCnL7tnTzsm2xHXxMumHX0oJbbqOr4zVFl7Lt0x/wDGdnzdfjc/J53JsaDori3ntda31FiKOkI4cNgMzNiLuYsZRE5lZE16OiiSJVc7d7Uc1VajUc1Uc7qiV/hhwr13wrbR0rRfpXI6HpXHvr3rjJ0ybKjpHSdgrEb2bnt5laknOnREVWlo0NpufhRV4g5XNSJPVyuobGbhbjYJrUrYJIoWNasbI1er9413axHdFTr37Ixd40WxYjqV5Z5ntihiar3vcuyNaibqq/3GTaN4vam4j0Ysvj9DyUdFZCGaSnnLGVYy06JGOWOZavJu1r1ROXz1d5yKqIhNN4t6U1WviTwfUSpkv4GqTaYycDF7TzfOkfXRrE69XOVETvVUK3w00JxM0HhcXo2xc0xkdIYuu+lBkt7DMjLWbG5sLXRcvZte3zEVyOcio1fNRV3S137hU+APG7UkWieFNPVunrfi/UlWOjU1NZyrbM9m2kDpEWaLZXNSRI5Fa7ncvROZG79IXK8XNb0dEXr2FoyV8y7iTDhr1XIZ3wqONFmgasEEi1k5IHqvJsjd2I5zkVy9C/Yfgfncfw84LYGS3jnXNFZGrbyD2ySdnKyKrPC5IV5N3LzStVOZG9EXqncvLlOAuobOjtW06uQxsOata1992JfKsjq/mTQyxxz7NRyb9kqLy8226Kir3GNLVBZtR8Xc/is1hNK43R8WZ1zdx7snbxseVSKnQrtejOd9p0W7uZ68rUSLddnboiIUvMcQeIFXjriq9DS8127Y0c+zY01JnGRU60qXUasrpOVzXO2RGo5rFVebZeVEXafy+geIvvxw2v8AEv0zHq3xU/C5fE2p7C0Jq6TulidFOkfaNexVXfePZedU6bIpM6b0HqleLFDWmoJ8QsqaZfiLMONdKiJYW2kyKxHp1YjERN1duq/aohd8iJu+6Ds2OFmn9bYfT1J9TIrIy0zP56DFRUZI3rG+N0r2uRzu0Y9qcqdeXddtyqat90DqPVOhuFGptCY2BsWodRtx12pcvsj3czt2urdo2KRFY58L17VvXaNuyKj12/OG9zzq/S9LQlqo7TWayWnn5hr6GXkm8DTwy46dliJzYlVJWMVGqis2VHORHJ3r10OAGsMRwswWGr5HBTai07qyTUdCVySx07bXTTSLHIiNV0O6WJE2bz7creq7rtP5hv2NltT46rJerx1Lr4mOnrwyrKyKRUTma16tbzIi7ojuVN9t9k7jpOHBuyT8RUdmY6kWUWNPCWUXufA1/pRjnI1yp8qoh3Gwejhb/N9g/wD2P/upaiq8Lf5vsH/7H/3UtRy9p9/b85+azxkABzoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo17+c65+R6/8AnTksRN7+c65+R6/+dOSx61rhZ8o+TKWbcSOK+V0frrSmk8LpdNRZPUNe7PE+S+lWKDwfslXtHLG/ZqpKvnIiqioiI1ebpRtbe61q6R1BkcM3HYKW/hYYly8V/VNag5s7okkdDVbK1HWFajkTmVI2qq7b77omj6j0HkMvxi0XqyGas3HYXH5KpYie5yTPfYWvyKxEaqKidi7fdU702367U27wu11pDXeq8toiTS97F6mnZesVtRtmR9G2kbY3vjWJq9qxyMaqscrNlTo5ENE17mKMxfGXVmruOGmYNNY6pf0Vl9Jw5pkVu/4NI2OWeJHWFakD1WRjXcqRc2y9V5mqWPS/GLVeustqqtgtC1pKOAyl7EPu3s32CWJ4EXk7NqQOXZzuRHKu3Jz9OflVDo1boDVkPFPB610rJhJZYsRJhMhRyr5YWdk6ZkqSQuja5eZFaqcrkRFRe8muE2g8hoOHVzchNWmXL6kv5iDwZzncsMz0cxrt2ps9ETqibp6lURWox7Tfun8bpThZw7jajLWcz2Okvsbq3U8VdIoGScqunuysTtHK5yI1rY1Vdl6IjVUt+hvdPUNbXdLMixLIaWXydzBWb0ORjsw1chBEkzImvjRWTMlj5lZIjk7kTl3XpWtK+531lw+wvD3I4O3p+5qrT+FlwORpZJ0y0Ltd8qSorJWxq9j2PRFRezXfdU6em/a54Z6h4i8HJsLkLeLw+tGSNv0shiGSNrU7kUvaQPYrt3dERrXO26oruib7EjEKvnPdY4/EYyCx4soRS5PL3sfhXZPNRUatyvUcjJbck8jUSJiv3a1qI9zvNVO9eW78FuM2P4x4rLTVoa9e9ibngVyKnfjvV1crGva+KxH5sjFa5OuyKio5FRFQrWqOBN7ER8Pb2gpsbFk9GVJMbDSzbX+C3qskbGyNkcxFcx+8bXo9EXzt90Xcs9XWtnQGEqJrmtHHlrkkrkj0lhr9+uxjVTZrnRwudvs5POcjObrsnRSxWu8SvFHiNW4Y6Ybk5KU+Vu2rUOPx+MqqiS3LUruWKJqu6N3XdVcvRERV9Gxi0HGvP6P4l8QMzrzFWcFRw+lsfZZgqWT8PikkfZsMa6LZrG9pI5WR9Wou7U3VU2UuWvew484GrX0lavYvUenslVzmPnzuCvVKyzxOXZj+2iYrmua57V5FVyc2/wCOuZrgLrTiXf1vc1hcwOJnzuCo42ouDkmsJVsVrMliOR3asZzt53MXptuiKmybcyprPAWJPdC2dJ3blbiNpZ2jHsw9jOVpIMgy+yxDBy9tHu1jOWZvOzzNlRebo5T3N4yaxo6I1Dq3N8OfE2Hx+Ds5qskmajknm7KPtGwyxtj+Be5qd6LIjdl369Fr2ouA2q+M961Y4lXcLRjhwVzDY+vpx00qMls8na2nula1d07JnLGiKnfu5Sw1dGcS9WaNzekNbWtMNxN/CWcSuRw62HWppJI+zbM5j2tZH5quVWIrt1VNlRE6t4nMpxd8W5fQFHxT2nvrqWrXaeE7eC9jVSfl25PP335d/N27+vcZ/hvdN6ozdDQt2Lhs1tbWse2JVc9HzJMkSyuSZOy8yPlbI5HtVzlRqbsRV5TpxvCniNk9UcPb2oZ9Mw0dKUblJzMbNYfLadLU7BsvnxtRvVEVWdduq8zuiJ2aW4H53B6e4IUJ7eOfNodzlyLo5JFbLvSlg+B3YnN50jV87l6Ivp6D+aR6ch7qehgtF2chmcRDitRQZ+TTT8TaysUVZLjGJIrltvRrWw9krX86tReqJyqqoix1L3X1K1pvPW48HUyeYw17G1ZqODzkF6vOy5OkMb4bLURquRebdj0Z1REVURyOP3lfc8aiktZnN43JYqDUcOtJtUYdLKSS1pIZKkVZ9eynKit5kY/dWc23mqir1RJ7VHDrXGv+Hz8ZmmaYxuX8d46/HHinzrAyvXswzPa6RzEc969nJt5jU6tT1qT+YRusON2qqek+J2Nfpyvp7W2ntPrmajWZNtqvJXe2VEnbIsKefGsT1WNzNnK1qc2zuZPyzjtqnS+heH/jjS1GzqbU8jKtNrs4kdWRErJL2s1h0CJHI/ZyJEjHbr0Rylj1bweu6t17rTJS3K9fEag0c3TTVarnTxS9pZV0it2RvLyzt287dVReid6wU2guJeQ4WY7SmYwvD7PtrRMpT1shLafWswMiRjZN+y3jk5k32RrkT0ORepd42bC2rl7D0rOQo+LL0sLHz0u2bL2D1RFcznb0dsu6bp0XY7Sq8KtJXtB8N9OadyWRXLX8bSjrTXFVy9o5qbdOZVXZO5N+uyJuWozgc3C37Cqv9ot/6mUthU+Fv2FVf7Rb/wBTKWw5u0+/t+c/NZ4yAA5kAAAAAAAAAAAAAApms/st0p+O1/lIXMp+vGeCZHA5aXzaVOaVliX0QtfGqI93qajkRFXuTm3XZEU6+y+9jyn5SscXaD8MlZIxHMe1zV6o5q7op+uZPWh0I8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetDlyOVqYqs6e1O2KNOielz1XojWtTq5yqqIjU3VVVERN1LETM0gezhb/N9g/8A2P8A7qWogdB4ufDaNw9O0zsrMVZvaRqu/I5eqt39Oyrt/cTxxdomLV9bmOc/NZ4gANCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbnNSYnTNCzey+Tp4ulWYks9i5O2JkTFXlRznOVERFXpuvp6ASQK5kdbwVm5ZlHGZbM3MayFz6tKk5vbdrtypFLLyQyKiLu5Ek8xPjbbpv5yNzU87stBjcbQquhdAlG5fsueywi7LK50bG7t5eqInN5y/0U6qERe/nOufkev/AJ05LFeyUFvCcQ7ORylyJ+PyNZlam9IeybAsaud2T3bqjnO53ORy8u/cidOtg5k9afnPWnfZszHKGUvIPHMnrQcyetDBi8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetBzJ60A8g8cyetDnv5Kri6z7FqdkELE3Vzl/6Ineq/InVSxEzNIDhb9hVX+0W/9TKWwrvD7HT4vSNGGzE6CZyyTuif8ZnaSOk5V+VEdspYjj7RMTfW5jnPzWeIADnQAAAAAAAAAAAAADw5qParXIjmqmyoqdFQ8gCsycMdHTPc+TSeDe9y7q52NhVVX/lPz5LdGeyOB/VkP0S0A6Novs86yuKear+S3Rnsjgf1ZD9EeS3Rnsjgf1ZD9EtAG0X2edZXFPNV/Jboz2RwP6sh+iPJboz2RwP6sh+iWgDaL7POsmKear+S3Rnsjgf1ZD9EeS3Rnsjgf1ZD9EtAG0X2edZMU82PcbuHulsXwzytmlpzEUbLJKyNnr0IY3t3sRIuzkRNt0VU7+5VLz5LdGeyOB/VkP0SG4+KqcKcxyrsvaVfX/WovUaCNovs86yYp5qv5LdGeyOB/VkP0R5LdGeyOB/VkP0S0AbRfZ51kxTzVfyW6M9kcD+rIfojyW6M9kcD+rIfoloA2i+zzrJinmq/kt0Z7I4H9WQ/RHkt0Z7I4H9WQ/RLQBtF9nnWTFPNV/Jboz2RwP6sh+iduL0PpzB2m2cbp/F4+w3flmq0o4npv37K1qKTYJN/e2opNudZSsgANCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Ku3f0K/W1/gsitHxbd8csvRTTVpsXG61BI2JVR/w0aLG1UcitTmcm7k2TdegFhBXKudzmUSlJX086hXsVZJZHZSyxk1eXujjdFHzo7fvVUemyeteiea2I1Ba8DkyOdjgVKj4rVbGVUZG+Z3dI10ivc1Gp3Jv1Xqu/cBYXORqKqqiInVVX0EHPrfBQ2WVm5KKzafUkvR1qe9iWSBnRz2sjRznJv0TZFVV6JuvQ9VXQeJiWlJaZYytmrUfSbPkrD53Pjf8AH50cvK5Xdyrtvt07uhN0qNbGVIalOvFVqwtRkUEDEYxjU7ka1OiJ8iAQXvpyN+NFxmm70qS41b1exkHMpwrMq7MrSNcqzRvX4yqsSo1O9ebzTzJV1RkO0R13HYeKXHIxG1oXWZq9xfjPbI9WtfG1OiIsSK5eq7fFLGAK5LoqO+lpuTyuTyMVqkylNA6ysMSonxntbEjOV7l71RfkTZOhIY7TWJxNl9mnjate1JFFBJYjhakskcabRtc/bmcjU7t1XYkwAAAHpt04MhWkr2oI7NeROV8UzEexyepUXopXncL9GvcrnaSwTnKu6quNh3Vf+Us4Nli9t3e6xamPKViZjgq/kt0Z7I4H9WQ/RHkt0Z7I4H9WQ/RLQDZtF9nnWVxTzVfyW6M9kcD+rIfojyW6M9kcD+rIfoloA2i+zzrJinmq/kt0Z7I4H9WQ/RHkt0Z7I4H9WQ/RLQBtF9nnWTFPNV/Jboz2RwP6sh+iPJboz2RwP6sh+iWgDaL7POsmKear+S3Rnsjgf1ZD9EhNPcKdJMyupll0TQhY/ItdE+5Vhljlb4LXTmgbsvZx8yOarOnntkdt5+66GV7S9Va+Z1a9cfapdvlGSJNYn7Rlv+B1m9rE3/y2Jy9ny/0o3u+2G0X2edZMU83o8lujPZHA/qyH6J8S/wDiO05eEd/hzqPRtWrhnSS2q81etTj8Hmc3s3M7SFWqyTvcnnIvcf0COa1jql2epNYqw2Jqcqz1pJY0c6CRWOjV7FX4ruSR7d068r3J3Ko2i+zzrJinmwf3NWncvrfh3XyXE3hVpbTWVejFrpBTh7WzGrEd2kkPKvYO6oitV3NvzIrGbJvrPkt0Z7I4H9WQ/ROlGzYHOuVG2LGNyUjpJrFm8jmVJto2RsYx/VGSdejVVEfts3z1VJ8bRfZ51kxTzVfyW6M9kcD+rIfojyW6M9kcD+rIfoloA2i+zzrJinmq/kt0Z7I4H9WQ/RHkt0Z7I4H9WQ/RLQBtF9nnWTFPNV/Jboz2RwP6sh+ideN0FpnD2W2aGncTRsMXdstajFG9F9aKjUUnQSb+9mKTbnWUrPMABoQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ7x+RV4UZhEbzr2tTzev9ai9RoRnnH5vNwozCcqu+FqdG9/+9RGhgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFzWpUovtUcdAmXz0VZLLMXHM2N6sc/ka57ndI2q5HdV6qkcnKjlaqATRGZbU2LwclOO9eiryXLTKNeNV3dJO9N2xoidd9t1+REVV2RNziuacvZmxabkcvM2gtmKarWxvPUexjE3VksrXq6RHO3VduROVGt2XzldJYzCY7CrbXH0a1Fbdh9uyteJrFmmdtzSP2TznLsm7l69E9QEbFqLJZCaBKOAsNr+GyVrE2RkStyRM75mN2c56OXo1FRu/eqomyr4p4rUNiWlPks3FCsFiWSSri6rWRWIlTaOOR0vO7ze9XMViuXbuTdFsIAruO0DhaC4qSWs/KXMW+aSneysz7lmB8u6SObLKrnNVUVW9FREavKmzehPxRMgiZHExscbERrWMTZGonciIfsAAAAAAAAAAAAAAAAAAAAAAAAAAAAK5pan4LmtXyeLLFDwjKsl7eaftG3f4FVZ20bf8Ay2pydny/0onO+2LGV7TEHY5nVjvALdPtcox/bWJEcy1/A6ydpEifFYm3Jsv20b19IFhAAHJlMVTzmPno5CrFcpzt5ZIJmI5jk7+qL8uy/wBxHaQy0+TxTo71qhay9KV1S/4tV3ZMmaiLtyv3c1Va5juVVXbmTq5NnLOFcx8raeucvUW3T/hdWC6ylHX5J0ciuikle9Oj0VGwtTfqnJt3coFjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnvH1N+FGYTZF+Eq9F3/rUXqNCPiT/wASHiBxN4a43BXdOZZkGism1tO7WWlFKrLcciyscr3MVyI5ETZEXb4JfWu+8+5OzGvtTcFcPn+I2RbfzuYc69C1KsddYKrkb2TFbG1EVVRFfvtv8IiegDYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACu6CtNyOma95s1+dbcks3Pk4+znTeV6oxW/atbvytRPtUT07qZ57rbO6+0nwTy2oeHWQbQzeHe27OjqsdhZqrUckrUa9rkRURUfvtvtGvrMY/8PTijxZ4yVM9ndaagdktK0WpQpRy1ImPmtKqPe/tWtRy8jdk2VdvhU9XQPswAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACu6Wq+D5rVz/ArtTt8qyTtbUvPHZ/gVVvaQp9pGnLyK3+nHIv2xYiu6Wq+D5rVz/ArlTt8oyTtbU3PHZ/gVVvaQp9pGnLyK3+nHIv2wFiAAArmQtNra/wkTsjWhSzQuMSg+vvNYc19dyPZL9q1ic6OZ9ssrV+0LGVzP2m1tW6XY6/VrLYksQtrTQc8tlexV/LG/wC0VEYrl9aJsBYwAAAAAAAAAAAAAAAAAAAAEbqPNN09hLWQdEs6wtTliauyveqo1rd+u27lRN9l7yqvx+oLnws+qr1OV3V0OPr1UhZ8je0he5UT1qu5IcUvsLsf2mp/qYjpPSuYizdRbpFZmeMRPCI5+bLhCE8S5r21zf6Cj+7DxLmvbXN/oKP7sTYNvtPCPTHQqhPEua9tc3+go/uw8S5r21zf6Cj+7E2B7Twj0x0KoTxLmvbXN/oKP7sPEua9tc3+go/uxNge08I9MdCqE8S5r21zf6Cj+7DxLmvbXN/oKP7sTYHtPCPTHQqhPEua9tc3+go/uw8S5r21zf6Cj+7E2B7Twj0x0KoTxLmvbXN/oKP7sPEua9tc3+go/uxNge08I9MdCqg6/wCEVfijpmfT+qdQ5bL4eZ7JH1pY6bfOY5HNVHNro5FRU9Cp03TuVULBDp/L14WRRaxzMUTGo1jGV6CNaidERE8G6ITwHtPCPTHQqhPEua9tc3+go/uw8S5r21zf6Cj+7E2B7Twj0x0KoTxLmvbXN/oKP7sPEua9tc3+go/uxNge08I9MdCqE8S5r21zf6Cj+7DxLmvbXN/oKP7sTYHtPCPTHQqhPEua9tc3+go/uw8S5r21zf6Cj+7E2B7Twj0x0KoTxLmvbXN/oKP7sPEua9tc3+go/uxNge08I9MdCqE8S5r21zf6Cj+7DxLmvbXN/oKP7sTYHtPCPTHQqhFyGX0kjLlrM2M3j0exliO7DC2SNrnI3nY6KNidN0VUci7pv1TbrfjOuIX2G5P/AIG/42minP2iImzZt0pMzMbt3CnLzSeFQAHAgAAAAAAACC1XnJ8RXpwUmxuyF+fwaB0qK6ONeRz3SOROqo1rHLtum68rd033SvvxGbkXmXWWXjX0pFBSRv8Aci11X/qdeuvsg0h/bZv9LKd56l3Sxd2ZiI384ie+Y7/JlwQniXNe2ub/AEFH92HiXNe2ub/QUf3YmwZ+08I9MdCqE8S5r21zf6Cj+7DxLmvbXN/oKP7sTYHtPCPTHQqhPEua9tc3+go/uw8S5r21zf6Cj+7E2B7Twj0x0Kq/Z05lbleWvPrDMTQSsWOSOSvQc17VTZUVFrdUVCD0Fwkh4YaXq6d0vqLL4jDVle6KtHHTfsrnK5yq51dXKqqq9VVfQnciF8A9p4R6Y6FUJ4lzXtrm/wBBR/dh4lzXtrm/0FH92JsD2nhHpjoVQniXNe2ub/QUf3YeJc17a5v9BR/dibA9p4R6Y6FUJ4lzXtrm/wBBR/dh4lzXtrm/0FH92JsD2nhHpjoVQrcNmmuRV1nmnIi9yw0dl/8A9Yk9OZi/WzHiXJ2PD3SV3Wat3s0je9rHNbIyRGojeZFexUVqJujlTlTk3d7yIj/nKwX5Mv8A+ZVJNLyJiYjhPCIjhFe4rVegAeSxAAAAAAAAAAAAAAAAAAAAAArmlq7Yc1q97aN2osuVY90tuRXR2l8Cqt7SBPtY0RqMVP6cci+ksZXdL13QZrVr1rX4EmyjHo+5LzxzJ4HWbz10+0j81Wq37oyVftgLEAABXdSXfBdQ6Tj8PqVEs35YewsQ88lr+CTv5InfaOTk51X0tY5PSWIrup7S185pFiX6lNJ8nJEsNmLnkt/wKy7s4V+0enL2ir/Qjen2wFiAAAAAAAAAAAAAAAAAAAAAVPil9hdj+01P9TEdJzcUvsLsf2mp/qYjpPSuvcR5z8rK9wq7JuvRDO9XccdMYXROrs5hMvidU3NOY+e9YxmPycTpPg2qvK9Wcyx7qm26tXbfuPV7pHF5zNcCdbUdOMnmy8+Oe2KKqq9rK3p2jGbdeZzOdqInVVUyXW+ueFOpPc/6/oaBZjo7tXSFxFr1cesM1WBI0RYpXcicjubl3Y5d1VFXZdlUxmaI3vA8TNL6gx1u1W1DiJFx9dLGSjiyET/AE5eZ3bKi/Bo1EXdXbdylHT3TWlsRjdFT6lu4rCSaomsxwyR5qrYqQRw9qvbOsI5Gqx3Ztait32fIjV6oVuDTWI03xu4PRYrF08bFe0tlatqOrA2Ns0TG0nMY9ETZyIrnKiL61Mz0jbxmmeF/ufdTZtkcGncXnMpHfuyxc0VZsrbscaybIvK1Xq1N16IqoYzan/36D6xzvELS2lm0nZrUuHxDbqItVb9+KBJ0Xu5OZyc3endv3lWg46afr6/1PprNXsZgI8StFta7fyUcaX3WYnScrGu5ereVE2RXb779DI62sdAab4x6/wAtxD8DdVz9fHz6cyGSpOnr28Z4K3eGuvI5N0kV6ujTZXK9F2U6LOmdP6o177oOzbxNK8z3v41kD7FVqujidRmds3mTdnc1dunVqepC4p7hv2otf6Y0hYq189qPEYSe1/u8WRvRV3TddvMR7kV39xXdccdNH8O9aae01n8xSxlvMwz2GT27kMMUEcaJssiveip2jlVrOmzlY/r5p8zZjUcWodJ6OwWoshVwFefh5jp6tx+Fiv389YlhVH1onyxydGqjVWNjedVl3RU7ybwmpcRhML7mfVmpZ448JVwFvGXsnajV8cNlasDGRyu2Xldzwyt6/bNVO8mMfXxB6k13prR0laPP6ixWDksrywNyV2Kusq+pqPcnN/cTFexHbrxTwvSSKVqPY9O5zVTdFPmm3qDRehOO3EuxxRiqwyZZlLxHbytJbENig2ujXwQLyOTmSbtFdGnVyuRdlM5mg3q7xD0rjc5VwtvU2Hq5i1yrXx89+Jlibm+LyRq7mdv6Nk6kBc45aQx3Fjye28xTqZ5acVlrbFuGNHySyckddrVfzLMqbP5Nt+VzFTfmPlz3Sefq6ri4oUJrdbAXqNWB2Ew1LBRyX8xGleOVtp0zonSIxq7tRY1Z2aRLzKmxrd7VundP+6Ww2fzdqvWxuodHVa+LyMse8Vq0lt7+Rj0Tbn5JY1T07KYYt42qfXmma2o2aem1FiYs/IiKzFPvRJadum6bRK7mXdPkPRneJekNMZPxbmNU4XF5FWo9KdzIRRTK1eiLyOcjtl9ex8e6O0lp7O1r2jNea7zGA1xb1DOtrDxYimtiaw6458FmGdajpnMVFjckvabNTdN2tREP3qq7hJeImttA5HI6ax+RyGtauZZqnKX2V7lRjX15UhZE9vO57UYsTHIqMVH96dd2OaD7HyOu9NYfO1cJf1DiqOatbeD46zdijsTbrsnJGrkc7dfUh+MnxB0thckuPyOpcRQvpLFCtWzfijlSSXfsmcjnIvM/ZeVNt3bLtufJmt7Wm8TprjlpjU1DwriVnsxckwld9R0ty8yRjExr6zkaqubH5ieavmKx2+xqvCTTsc3ug+ItzNVoLmep4bT8LrUjEe5j1hmWXlVe7d8bV3T+inqLFqZF1w3HnSVjGXsnmdR6ZwmLbk5qFC87UNWWG8yNrHc6PRyI13n9YlVXN2RV70LDR4o6Myen7edp6uwVvB1H9lYycGShfWhfsi8r5UdytXZzeir6U9Z8zW+JeA4ScPuJc9yDEuyl3X+Rx+GhycbPB453pCnav3ReWKNPPcqehqJ3uQhdQw6Mqac4WO0zrBbWgcHkrvvj1JjKkFxIsnNC10VqxHLFIxOZ7pU5lYqM7Ruyt2QmIfZeEz+M1NjYshh8jUytCXfs7VGds0T9u/Z7VVF/OQvEzXdfhxoy/nJ34/tYW8teDJ5OHHRWJV+LH28q8jFXZe/1FK9ztpzTWPx+o85pfVFzVVPNX2yT2pqkNWBZo42sc6JkMMTFRycu72tVHK3vVdz8+6+hjm9zVxA7RjX8mMe5vMm+y7p1T5TOv8tRfMtxI0pp2dK+Z1NhcRbR7InV7uRhie2RzUc1mznIu6oqKielF3IPUHHPR+l+JeO0RlcxSx+UvUXXWSWrkMUafCMjji856L2kivVWt26ox23cZXkNPYvM8RPdGvvY6rckTA4+FJJ4Wvc1i0ZlVqKqboiqiL09KJ6iB03qXD6N1HwP1Vq6eKnir3DttFMnbjV0bripSlaxztl2erWvVN+/ZdjHFI+lcjrzTOIztbCX9RYmlmbOywY6xeijsS7rsnLGrkc7dfUh6stxH0lgL60snqjC466kyVvBreQhik7VWtekfK5yLzK17HI3v2c1e5UPkJdOaeyWoOImluIutcppvPZnUVrbGNw9OaTIVpZESrNWmfUkmc1GKxqK1+8as+02Ltl9KYyxb91El2pDkbEOIqwJbtxNfM5G4Zioqu2335k5unp6kxSNqyvHLSGD4qVtA5DL06OasUktsWzbhja57pWxx10Rz0csr+bmazbdUTdNy/ny9hNRYnSnFjhln9VTR06mX0BBRrZG3GqsmvdtBJ2fPsvwitXdN+/rsfUJnZmorvEL7Dcn/wADf8bTRTOuIX2G5P8A4G/42mik7R7qx5z8rK9wADz0AAAAAAAAU3XX2QaQ/ts3+llO84NdfZBpD+2zf6WU7z1I93Y8vrKz3ODOagxemMbLkczkqmJx8W3aW707YYmb9273KiJ+c5K2t9O3MJBma+fxc+HnkZDFkI7kbq8j3PRjWNkR3KrlcqNREXdVVE7zPPdNajk07orD8zcfXx93NVql7MZSi25BiYVR7ltLG5FbujmsY1zvNa6RFXuPm2OPF2NC8T8NXvrnsRNrfT1qN9mjHWZbhnmqNdKkLI2RrHI+KREc1iNfyKvXfddU2qTRH2jitf6XzuKu5PG6kxGRxtJXJauVL0UsMCom6872uVG7J1XdUPzh+IeldQ+A+KtTYfJeHvkjqeB34pfCHxt5pGx8rl51a1Uc5E32Rd1PnnivpjSs/E/ibh85ZdpzTN/RWJnvWqEG/Zysv2GxSqxrV5uVWsRd0VOVFRem5Bv1Nkc9wjyesMVjcbl73DzU0WUpZjT9JadfUEDImMsvazZdnLBJJG9UVzeaNNuiIiMQ+sLupcRjsfYv28rSq0a0vYT2prDGRRScyM5HOVdmu5lRuy9d1RO85J9eaZrajZp6bUWJiz8iIrMU+9Elp26bptEruZd0+Q+XdM8LNYYTX2kdFZp0uQw2orkeu85Ze5XNiv10V1muiemN1l9FydftXdCsaO0lp7O1r2jNea7zGA1xb1DOtrDxYimtiaw6458FmGdajpnMVFjckvabNTdN2tREJinkPseTiDpaLMMxL9S4hmVfYWm2i6/Ek7p0a1yxIzm5lfyua7l232ci7dUJ8xHgZgse7idxoyrqUDsiuqGQeFOjRZEY2jWc1qL3oiK9y/3m2So10T0f0YqKi9duhnE1ELhtdab1Feu0sTqHFZO5RVUt16d2OaSvsuy9o1rlVvX17H5wGvtMar8L8SajxOY8D/3nxfein7Dv+PyOXl7l7/UfFLplXhzrXh7wxlh1niIdPrZrZfHYxa+VpwJciWbHWFVqJK98Kyq1FRr15VRzV7zQtHR6OtTZHV+i9W3tfah07pu66DAtw9SnFLG6NNqs6V6kSqqvaxEicu6Ki7N7zCLY+ldOa90zrB1puB1Fic26ou1hMdeisLCv4fI5eXuXvPViOI2k9QTyQ4vU+GyU0dVLr46eQilc2uu20yo1y7M6p53d17z5T4Q5bFTccNB5HH6lqZqXJ6cyFS6mLw8VClWm5YZm02LHG1XK1GSu5JHve1Gbrtv19+F0jHH7hHRq4zDusU3tx93O1sfDzWLlLwpkltPN85+7EVVT0taqd3QYpkb5rXj1pvA6ByuptP5HFavZjrNStPBjcnG9GLPZjg857OflVO0V2yp15dunel007rDA6vjsSYLN47NR1pOyndjrcdhIn/0XKxV5V+RT5x4zau4aa94D6th0QuKuxNnwsV1cfR7KNYlyMKMje7kRF289OTfdu/VE5ut6weGoac91fdq4mlXxlWzomGWaCpE2Jkj47r2McrWoiKqNcrUX1dC1mo2siI/5ysF+TL/+ZVJciI/5ysF+TL/+ZVN9jv8AKflKwvQAPJQAAAAAAAAAAAAAAAAAAAAACvaYr9jmdWP8EvVu2yjH9pcl547H8DrN54E382PzeRU6eeyRfSWEqujab6uoNcSPtVLDbGZjlZHWsulfCngFNvJK1V2ifu1Xcjdk5Hsd3vUC1AAAV3VFrwfN6QZ4dTqdvlHx9lah55LP8CtO7OFftHpy86u/oRyN+2LEV3VFrwfNaRZ4bTq9vlHx9lai55LP8CtO7OFftZE5edV/oRyJ9sBYgAAAAAAAAAAAAAAAAAAAAFT4pfYXY/tNT/UxHSc/FBFXRdn5LFVyqq9yJZiVToPSuvcR5z8rK9wACoAAAAAAAAoNzgthb1uey/M6uY+Z7pHNh1Zk42IqruqNa2dEanXoiIiJ6C6YvHR4jG1aUMk8sVeNsTZLU755XIibIr5Hqrnu9bnKqr6VOoEoAAKBlus/c/Y7XuRyLsxqrVc+EyMjZLenUyTfF8qJt5nKrO0axeVN2se1O/1mpAkxE8Q7gAUAABX9W6IpazZVbdu5imldXK1cRl7VBXc22/OsEjOfu6c2+3XbvU9Gk+HmP0dbmsU8hnrj5Wdm5uWzly+xE333a2eV6NXp3oiKWcEoAAKAAAAACu8QvsNyf/A3/G00UzviCnNo/IonerWInyqr27IaIYdo91Y85+Vle4AB56AAAAAAAAKbrr7INIf22b/SynecOuU/29pBe5PDpk6r6fBZun/RfzKdx6ke7seX1lZ7gAEQAAAAAcmWxkWZxlmjNLYhisMWN0lSw+vK1F9LJGKjmL8rVRUKbQ4MYbH3q9qPM6ukkgkbK1k+q8lLG5WruiOY6dWub06tVFRU6KhfQSkSAAKAAAAAAREf85WC/Jl//MqkuRMab8ScGqbdMZf3Tfr/ABlUzs9/lPylYXkAHkoAAAAAAAAAAAAAAAAAAAAABXdLuhdmtWpEmKR6ZRiS+Lv45XeB1v8Aev8A1uXl2/8AS7EsRXtMv5s3q1v+x/NybE2xn8f/ALnWX+Gf+v6v/R7ACwgAAV3VFnsM5pCPw2lV7bKSM7K1FzyWdqVp3ZwL9pInLzq7+hHIn2xYiualtdjqDSUXhtKss2QlTsLMXPLYRKlheSFftHp0crv6DXp9sBYwAAAAAAAAAAAAAAAAAAAAHNkcfXy1GenbjSatOxY5GKqpui/KnVF+VOqegqj9Lamq/BVM7j5oG9GOv4975uX0czmTNRy/KjU/EXQG67vrd3FLPyifmsTRSfe7rD78YP8AVk37wPe7rD78YP8AVk37wXYG7arzw0jotVJ97usPvxg/1ZN+8D3u6w+/GD/Vk37wXYDarzw0joVUn3u6w+/GD/Vk37wPe7rD78YP9WTfvBdgNqvPDSOhVSfe7rD78YP9WTfvB6LuK1Vj6k1mxnMHHBCx0j3eK512aiKqrsljdeiL3FoyuebSkdVqQOymSasKuo1pY0kjjlerUmfzOTljTkkVV71SN6MR7kRq+ijpxX3Ir+YmiyuRrTzy05ewSNtNknmoyNu69UYnKr1VXLzSbcrX8iNqvPDSOhVVMRj9b5WNtlbuGrUZoYpYFnxdiOwvM3mckkTpkWNW7tTZV335kVG7dZH3u6w+/GD/AFZN+8F2A2q88NI6FVJ97usPvxg/1ZN+8D3u6w+/GD/Vk37wXYDarzw0joVUn3u6w+/GD/Vk37wPe7rD78YP9WTfvBdgNqvPDSOhVSfe7rD78YP9WTfvA97usPvxg/1ZN+8F2A2q88NI6FVJ97usPvxg/wBWTfvBE24tY4u7HFfyGGjgtWm1qk9fFWZmqrmbp2u0u0PnNc1FVVaqqxObmejTTANqvPDSOhVSfe7rD78YP9WTfvA97usPvxg/1ZN+8HauKn0TVR+ErpJp+lSWOPTtOs1HtckiORa7lc1GojFe3slRWryxoxY0aqPssFiK0xXwysmYjnMV0bkciOaqtcnT0oqKip6FRRtV54aR0Kqb73dYffjB/qyb94Hvd1h9+MH+rJv3guwG1XnhpHQqpPvd1h9+MH+rJv3ge93WH34wf6sm/eC7AbVeeGkdCqk+93WH34wf6sm/eB73dYffjB/qyb94LsBtV54aR0KqhS0fk7dmF+eyda5Whe2VtSjUdAx72ru1ZFdI9XIi7KjU2TdE337i3gGi8vbV5NbXT5JM1AAakAAAAAAAARuewcOepJBJJJBLG9JYLEK7PhkTfZzd+npVFRUVFRVRUVFVCuP07q1q7MzWGc1Ptn4uVFX8e1j/AP75O4l59VsntyVMRVkzNmtdip3Uge1jKiOTmc973KiO5WbKrGczt3MRURF3T81tN2bslexnb3h9mtalsV46aSVq7GuRWsY+NHr2vK1V6v3RXKrka3ZqN32L+3dxhjh4xE/Na0UplvVuUkbHg8hhMs2WpJYhvsx8raDnNdyNjWdJ3dVcjviNfsjVVU6tR06zT2slY3nzGCR+3VG42ZURf05dYYY68TIomNjiY1GtYxNkaidERE9CH7Nu1XnhpHRaqT73dYffjB/qyb94Hvd1h9+MH+rJv3guwG1XnhpHQqpPvd1h9+MH+rJv3ge93WH34wf6sm/eC7AbVeeGkdCqk+93WH34wf6sm/eB73dYffjB/qyb94LsBtV54aR0KqT73dYffjB/qyb94Hvd1h9+MH+rJv3guwG1XnhpHQqpPvd1h9+MH+rJv3ge93WH34wf6sm/eC7AbVeeGkdCqk+93WH34wf6sm/eCIsVtd4+3DHalxMsNi34PFPRxs86RsVm7ZJk7ZqsRXczfN50TzVVURV5dNA2q88NI6FWf4mnqLN0YL1DUenb9GZOZk9ahK9j032XZyWFTvRU/GhY9P6akxdiW9ftpkcpKxIlmZF2UcbE68kbOZ3Kir1VVc5VXbddmtRPZe0zBNb8Opyy47Isgmgjlhkd2SLIvMrnw7pHI5H+ciuRVRVdsqI92/DJqW3pio9+pY40p1KMc9rO1I+Sq6Tm5ZE7FXvkiROj+qvajVXd/mqq4W+0XluMM0/SIhKrOD8se2RjXNcjmuTdHIu6Kh+jmQAAAAAAAAAAAAAAAAAAAAACu6b3bqHVjVbh2ot6J6eLv95ci1YE3t/+r5uzV+5JF6ixFdwbez1bqZvJiGc7q0v8CX+GO3i5eaynr8zZi/0W7egCxAAAV3PWuTVemK6XaUCyS2JFrWIueadGwuT4J32itVyKq+lN09JYiuZG1za9wdRt2kxfAblh1KSLmsSI19diSRv+1a1ZNnJ6Vez1KBYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgrWWny8zqeGcx8e89e1k45WKlKVrURERiovaSc7k81U5U5H8yoqI13ty77d24zF12XakcsLppcpX7NGw8rmokac+6q96K7uaqI1rlVWqrN5OvWiqRdnDG2JnM52zU23c5VVyr61VVVVX0qqqBzYrD1sRDyxN553tYk9uREWay5jEYj5XIiczuVqJuvqO4AAAAAAAAAAAAAAAEFkMa/Dz2MrioEa97n2b9GrWjWTJvSFrGrzK5m0yJFExr3O25U5VT4rmToA9NS0y7UhsRtkbHMxsjWzROieiKm6czHIjmr60VEVO5UQ9xW5Y4tKZvwiNlSrispPvcnsXHMVtt6xxwpGxy8m0i+aqN5VV6tXZyvcqWQAAAAAAAAAAAAAAAELczFi3k1x2IdXfZqzQOvvssl5IYH8zlRio3lfKqMROTnRWJI2RyKisbIHuymoqmMtNotXwvLS15bNfGQuak9hsaJzcqOVGom7mN5nK1qK9qKqbkbPp2zqqrPFqF7fFtutA1+FgcqNjkRUfIj5mqjpUV2zdtmtVqKjmuRykvhsNBg6Ta8L55urnOmtTOmlernueqq5yqu3M92zfitRdmoiIiJ3geERE7k2PIAAAAAAAAAAAAAAAAAAAAAABAW9LrBbuX8NaXF5G5PBLae5FmhnSNEbyrErtmq6NOXnZyu81m6uRiNP3X1QyG5DSy8LcNdtW5qtGOadjkuoxFe10aovesaK7kVEcnJJ0VreZZw/MkbJmKx7Ue1fQ5N0A/QKyyR+h4oIp5nSaar14oI7NiSezbilWTkTtXrzq+PlczeV6orOzc57nI5XNswAAAAAAAAAAAAAAAAAAACuUGpDr/Mp2WKjSfHU5EfC7a/I5slhru2b9yROz5F9bpU9CFjK9bVauvMa/kxTIrVCxE6WV3LffIx8To2Rp9tEjXTOd6WqjPWuwWEAACuQ20s8Qrddl6o/wPFxPkpJD/CI1mlk5ZFk9DHdg5EanpYqr6Cxlc01cTJZ3UtiPIVbsENtlNkcEHI+u6OJivjkf9uvM9y+pEdt37gWMAAAAAAAAAAAAAAAAAAAAAAAAAAACo8T+LGluDWmU1BrDJOxOHWdlbwltWawiSORVaitiY5yIvKvVU232TfdUA69D0kjoXsjLi4sVkcpcltW2RWfCO0cm0Ub1fuqKqwxQpsnRuyNTuLGYj7mz3Q/Dvi5iWYPRtxPD8dXdYs46Ktb7OsxZVRPhpYmtcqq5F2336r02RdtuAAAAAAAAAAAAAAAAAAADjy+Niy+NnqTRwyNkb0SxEkrEcnVrlYvRdnIi/jQ4tIZnx7p6rYfbq3bcfPVuS0kckPhUT1ina1HeciNlY9uy9U2Jkrmn7zWan1Lin5GvZmhlhux04q/ZPqwTR8rUe7uk5pYbDkd39eVfi7qFjAAAAAAAAAAAAAceXyC4nE3bzas911aB8yVqrOeWblaq8jG+ly7bInpVUOfTNF2OwNKF896zJyc75MlIj7CucqudzqmyboqqmzURqbbIiIiIZz7o3jhobg9o2xW1pmr+H8eUrdel4sgmdZlc2NEckUjGObFJ8I3lc9Wpuu/ci7TfB3jXozjZgp7+i8tPmKNFzK888tOxAiScu/LzSxtR67d/Lvtum/egF/AAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0W58OLmx72ZVfF1h9NljMKjprLG7K2RHp8dqo5ERy+cvKvNuu6r7dZawxOgNL5HUOdsSVMRj4+2szx15J1jZuiK7kja5yom/XZF2TdV6IpjXBL3VfCniVrbKac0vqjI5TNZO/NagrXadnlexsDFc6JzokbHEiMXZr1Rebm6ec3cN/AAAAAAAAAAAAAAAAAAArmsXeBPw2T/wBjwtqX42y2sumyxRSosSpA/wC0lc57Gpv0ciq30oqWMj8/jnZbC3ajGVnyyxObElyFJYUk28xXsX4yI7ZdvkAkARemcuzO4GldbZq23yM5ZZaTldD2rV5ZEaq9dke1ydeqbdepKAfmR7YmOe9yMY1FVznLsiJ61IDQFtcnpKhkvGMWWjySPyENyGt4O2SGZ6yQ+YqIqbRvY3d3nLy7r1VTxr7JLjtL2o4su3A3r7o8dSyC1fClhszvSKFyRdz9nvauy+amyq7ZqKpYWt5WoidyJsB5AAAAAAAAAAAqtziDXjsyRUMVk80yNysfPRjjSJHJ0VEdI9iO2Xoqt3RFRU33RUSa1FPJV0/k5onKyWOrK9jk70VGKqKVjSsbYdMYeNjeVjacLWonoRGIdtzd2ZszbtRXuZRwq93lDseyWe/NV+vHlDseyWe/NV+vO4G7DdZI1nqVjk4fKHY9ks9+ar9ePKHY9ks9+ar9edwGG6yRrPUrHJw+UOx7JZ781X68eUOx7JZ781X687gMN1kjWepWOTh8odj2Sz35qv148odj2Sz35qv153AYbrJGs9SscnD5Q7HslnvzVfrx5Q7HslnvzVfrzuAw3WSNZ6lY5OHyh2PZLPfmq/XlU4qJV4s8PM9pLK6Qzq08rVdAr+WqqxP72SJ8P3tcjXJ+IvIGG6yRrPUrHJ87e444WWfc18OLWOyOmMpd1Lk7S2Mhbp+DrGrW7tijarpkVUa3deqJ5z3d6bG9+UOx7JZ781X687gMN1kjWepWOTh8odj2Sz35qv148odj2Sz35qv153AYbrJGs9SscnD5Q7HslnvzVfrx5Q7HslnvzVfrzuAw3WSNZ6lY5OHyh2PZLPfmq/Xjyh2PZLPfmq/XncBhuskaz1KxycPlDseyWe/NV+vHlDseyWe/NV+vO4DDdZI1nqVjk4fKHY9ks9+ar9ePKHY9ks9+ar9edwGG6yRrPUrHJxt4iK1eaxprO1YU+NKsMMvKnr5YpXvX8TWqvyFpp3IMhVis1pmWK8rUfHLG5HNe1e5UVO8gjl4bvVcXlI9/MiyttrE37kWVXL/1cq/3mu9u7E2Jt2YpQ4raADgYhXVyHY8Qm0X5aPazi1mixPg/nr2UqI+ftfSnw0beRe7oqd6liK5ksklbX+BpuzDa/hNC8qYlavMtpzX1l7VJtvM7JFcnJ9v2+/2gFjAAAAi9U2JKmmcvPE5WSxU5nscneioxVRTKzZxWos8xEW+IVdliSOhicnmY43Kx1ijHGkXMnRUR0j2I7Zeiq3dN9033RT0+UOx7JZ781X68/Gm4mQaexccbUaxlWJrWp6ERibISJ6U2LqzOHDX9ZZVjk4fKHY9ks9+ar9ePKHY9ks9+ar9edwJhuskaz1KxycPlDseyWe/NV+vHlDseyWe/NV+vO4DDdZI1nqVjkxD3VeiJPdEcIr+m4dK5etmopG28Xbs+DIyKdvocqTKqNc1XNXZF70XZdib9z5go+BXCXA6RraSzUlirF2l2xElXaey/rK/ftkVU36Jum/K1pqgGG6yRrPUrHJw+UOx7JZ781X68eUOx7JZ781X687gMN1kjWepWOTh8odj2Sz35qv148odj2Sz35qv153AYbrJGs9SscnD5Q7HslnvzVfrzrx2u61q3BWuY6/hpLDkjidfYzke9d9mczHuRHLt0RVTfoidV2P2V3iK9YtBahmT48NGaZi+pzWK5q/3KiKZ2bq6vLUWMNK+MkUmaNFAB5LEAAAAAV7Ma0rYu9JSgp3MtciRFmhosa7st03ajnPc1qKqdeXffZUXbZUVY/wAodj2Sz35qv15H6Mf2uOvyuT4R+VyHMvr5bcrU/wCjUT+4nj1Juru7mbE2a08/oy3RucPlDseyWe/NV+vHlDseyWe/NV+vO4Ew3WSNZ6lY5OHyh2PZLPfmq/Xjyh2PZLPfmq/XncBhuskaz1KxycPlDseyWe/NV+vHlDseyWe/NV+vO4DDdZI1nqVjk4fKHY9ks9+ar9ePKHY9ks9+ar9edwGG6yRrPUrHJEZPWLczjbePvaLzdmlbifBPBIlVWyRuRWuaqdv3Kiqh81e5M9z073OWrtaZy3p3K5Ka/O6tiHxeDK6CjzcyI/eZESRy8qLtuicnRV3PqwDDdZI1nqVjk4fKHY9ks9+ar9ePKHY9ks9+ar9edwGG6yRrPUrHJw+UOx7JZ781X68eUOx7JZ781X687gMN1kjWepWOTh8odj2Sz35qv148odj2Sz35qv153AYbrJGs9SscnD5Q7HslnvzVfrx5Q7HslnvzVfrzuAw3WSNZ6lY5OHyh2PZLPfmq/XnlOIc2/n6UzrG+lytrO2/uSZV/Mh2gYbrJ8Z6lY5JfE5arm6MdunL2sL906tVrmuRdla5qoitci9FaqIqKmyodhTtFPVNTariTpH21eXl3+2WFqKv5mN/MXE476xF3bwx4fGKpMUAAaEAABWsFdioaozWCkvwS2HK3KVqUVVYXQVpfNdu5PNlVZ2TvVyecnaNRydznWUr2qr0mGsYfJvyclLHRW217ddlTt0spMqRRIrkTmjRsr43K9OiIjuZNvObYQK9kMgtrWeKxdfJT1pK8MmQtVY6yOZYiVFiY18ip5nnu50ROrlj9SKi2Er2lLMuUsZnJLYvurTXX169W7AkLYWwKsLljTvc18jJHo9fjNc1U83lVbCAAAAAAAAAAAEXqr7GMx/Y5v8Cle0z9jmK/skX+BCw6q+xjMf2Ob/ApXtM/Y5iv7JF/gQ9G59zPn9GXckgD5s077obWlfgc7ilqWjg/F00KwUsNjK9jwia060leFzpOd/KxVVVVjWPdtsqKq+aJmjF9Jg+bsPxr13qBM9hZ6tdZpMHbuVM9V07lcfXpTxom0UrbSMV/MjlVr2PRd2Lu1N0OTS3EniHon3OXDLKvmwupMvnbGEx1RLEM8SrDZYxvw8qyvV0u67rKiInevIvcTFA+nAYLqjMah07xe4XrrBdOZKNYMvN4bj6VqvLUfHXe5zo0Ww5qtdErGqj2uXdHKipum1a0b7qLVmqshpzJxafbawGcuQRNxtXAZVLdOtM5GssPuOi8GkRqK17kbs3bfle7bdWKO8fT4MIw3HTUeUx+Bwa0sYmvp9Uz6fyVdsUng0MNdXSz2WM7Tm5Vrdk5u7vjTM706FQX3WGpcpLYzmCwSZPTsd99aHEQafys163AyZYnzMtsiWsjl5XPRnVNk5Vejt0RigfUwB83cR+PmucbU19m9OVdPwae0llocJPFkoppr1iV/YI+ZiNkY1GothnKxd1fyr5zd0QszQfSIMi07rzXOreL+tNP02YGjprTGQpwSWLFeaS1ajlqxTPY3aVrWORXu2eqKmytTkXZVWo6L90bm8hxawWmchb05nsTm7FupDc09UutZVmhifKiLZlRYbCKkbmr2aorV26bDFA+iwfNdLj3xBp8Om8R8pU01Y0lXy81G7j6kFiO62uy+6p27JHSOYrm7I5WK3qiKqOTfZK7htfaz4YY/i5qvHVcHa0nidbXJchWtdt4dOxVgbKsTmqjGcrVRU5kdzLv8XpvjjgfWwMWx/FvUuS485TRs0mnsHjqUzEr0MoyduRyldYUe6zVk5kjeiOVW8iNcqcruZUNpM4moAxzRXEHX/FDKWczp+vpyhoivlpscxuRbPJeuRQTLFNOxzHIyPdzX8jVa7flTdU3Ms4c6+1nw10flc8yrg7OiI9c36VuB3beMFbYyr4VmY7dI05Xyt8xWrzIirzJvsmOIfWwPlfiHntRUaPumn0X4vFZzG4yrLFl6Edlk0lZa0z2I7edUbMyPdrZI0YnMvMrV22LtY4g6601hdAaWiXBZjW+p0ldWuPrz16NWpBCySSWVnavkkenM1uyObzK9PioijENyB84cUU19HrTgw22/Tk+rfHeRbBLAyeOhyLjp053MVzn7o3mXkR3VUROZN90l4+NupK+gtXPy9rS2C1RprOJhrFy22w7H2OZkUjHxRNVZXPcyVqJEjlVXIvUYhvAPkbWvG7V+vOAGtZKtqnhdQ4DPUMfZu1KlysyzBLNXc10cUrmTQq7tmtc1/Nu1r0T46Kn1PpuLMQ4WszP2aNzLoju3mxtd8Fdy8y8vIx73ub5uyLu5eqKvTfZLFqokjj4bfyfmfyva/xnYcfDb+T8z+V7X+Myt+5tfoscFvAB5iBXcxkvBtaadp+Okppaitr4r8F5/DVaka83a/8Al9nuq7fbc/yFiK7mMgtfWWnKiZeOoliO0q451fndc5WsXdJPtOTfdf6XN8gFiAAAh9Y/YjnP7DP/AJbiYIfWP2I5z+wz/wCW423XvLPnCxxQuA/kLHf2aP8Awod5wYD+Qsd/Zo/8KHeehb/qlAHzpov3RubyHFrBaZyFvTmexObsW6kNzT1S61lWaGJ8qItmVFhsIqRuavZqitXbpsfnSXHjXl/T2htW5elp1NOaizrMFJTpRzpbic+eSBk6SOerdudibx8q9F35/QmrFA+jQYBpXjFr3WWX1zj6qaWx+Yw7b7KWmLsVhMk18aqlWWTeRrZYZdmrzRoiIj02cqjT3uscZmNR6NrS12QYXL4BuRyOT69nQuvjfLFWcu+yLyVrm6Luu7Wbd/Vigb+D5hl909qmfH6Rosx9HG6gzeJdqKeR+GyGRiq0ZJnNqR9hV55FkcxEVznOY1FauydUaknU4+a9z7eH+Px+nqGLzWfymRxlp2YqW4YeWtC6RtqFknZy9m5qI7ke1FX4m7V85GKB9Fg4sKzIR4mm3LTVrGTSJqWZaUTooXSbecrGOc5zW79yK5V+Uy/UOvNc3eOFvQ2mmYGrj62BrZiXI5WvNM9r32JoljRjJGc26RoqLunLs5V5t0RMpmg10Hzpqj3Rub0pxUrYl1vTmawUuegwk9XF1Lr7VPtpEjY6W1stdJGq5quhXZ226IqqenWvHzXNaHVOdwNbT9fTGA1NDpmaC9DNNkJnrNDFJMxGyMZsjpk5Y1TdzUVeZOiGOKB9Ilb4lfzd6n/Jln/KcWQrfEr+bvU/5Ms/5TjquPfWPOPmys8YaOADxWIAAAAAzzRH8kXPyrkv9dOWAr+iP5IuflXJf66csB7F97y15ys8ZAfOnFX3Rub4b66twRW9OZfB0btOvbxdOpdlyEMczo2K6WwxFrwvRXq5I37czUTZd3Ih0at40cQMfLxWyGIp6cdhdBT88kNyOdbN6FKcViRiOa9GxvRHP2fs5F3anInKrnc+KEfQYMMXjZqHJcaKumK79P4DCzQUrVNudZO21mYpWo+ZakjXJHzxovLyKjlVU3XZOpC2/dT3NM4vHV87ja0uer6otYbNspMe2KpRgenPdRrnOcjEjnqPXdV/jFGKB9Gg+dtVe6YyuITLuo0KkzLWppNN4B/glqyrvB4ea5ZlZAj5JWtkbKxrYmovm9V23ckdb90nrbG6A1Zfdp+tcy+It4uKlelxN/G0ci21aZC9iR2UbIyRm67qjnN89i9erRigfTQIXSUWoosW5NT2cXZyKyq5q4mvJDCyPZNmqkj3q5yLzed0RenmoUji5r/VOmdZaA07patiprOpbVuvLNlWyOZA2Ku6XtE5HN325VVW/bbcqK3fmTKZpvGog+d+M/HHWHCfkjZk9I5LIUcQmRvYqPHZCS1Zc3mWRWpCr0qxLy7MkmVyb77qiIqnfqvjhqrKZa7V0TUwleHF6Xg1Pbk1D2qrOyZJHMhiSNzeXZsTuaReZEVUTl9JjigbyCr8LdS29Z8M9J6gvIxt3K4qremSOJYmo+WJr1RGq5yom7u7dfxlP1lrrWj+MEOh9KtwNdsmAXMvv5iGabs3NsdlyIyN7OZF3b6W7dV87ohlXvGsA+fMBx/1XxDx2hcXpnGYijqvOU713ITZPtZqdGOpP4NKrWMc18ivm2RqcybJ1VVNF4OcQchr3DZqLNVK1LP4HLT4XIspOc6u+WNGuSSLm85GPZIxyI7qm6p123JFqJF+Bn3GDiJktE1cBjdP0a2Q1RqPItxmNivPc2tG7kfJJNKrfOVjGRuVUb1VdkTv3MQx3EHVHDDXnGLI5uriczq2xNpzGUYMb2sFSxYsJLFDzI9XOY1Ffu7q7o1dl69JNqg+sAfPuo/dAan4RWNRY3XeOxOWydXCszOLl0+kteK2rrLKvg72yuerHJNND56KqK16rsipsTmotW8W9BcO9SaizGN01nb1Sk2epjsFBaR8civaj0k5nOWVjGK56qxGuXkVEam5cUDZgUfg9q2/rbRzctezWnc+kszkgvaZSRtd8fK3o5sjnOZIjuZFarl22TuXdEvBYmoj9F/ZZqv/AI6v+UXMpmi/ss1X/wAdX/KLmaO1e9/Sz/1hla4gAORiAADjzOPXL4i9RbasUXWoHwpaqv5JoVc1U52O9Dk33RfWiEHFqSebQ3jGOll5LiNWv2CU2suLMj+yV3ZuXkTzkV2+/Jy+durepaCjS4exNxFbVlpZixiUd48bkpcgngkVlGJXbVbF8dW8vNNyr5iP85Oq7IFtw2O8T4ijQW1YurVgjg8JtydpNNytRvO932zl23VfSqqdgAAAAAAAAAAAAReqvsYzH9jm/wACle0z9jmK/skX+BCw6q+xjMf2Ob/ApXtM/Y5iv7JF/gQ9G59zPn9GXckjJ6HufMf5A4OF+Tyk9utFErW5SrH4PMyVJ1njlY3d3K5j+VU6rvy/LsawCzESxUPR+idWU4MhX1hrVmratmr4KyGDER0Eai7o57la96ue5F2XZWt9TUKdhfc9ZmjpDTGmb+tm5PFaZy2Nv4vfEtilZBTermwSOSXZ7nN5G9psm3LvyrubaCUgUvV/DaLV+uNIagnuNZDgW3mPoug50tNswdkqK7mTl2Tr3Lv3dO8rfDbg7qbhpLjMVS1/La0RjHPSphbGKjWykKo5GQPtc27mMVyKmzEd5qJzbdDWAKRWooeO4PYfG8Y8rxFjc9cnfx0dBYFT4ONyKnaTJ1+M9kddi9E6Qp1XfpXtJ8FNQ6AyzqumtePx2inZJ+RTAS4qKeSLnlWWWCOwrvNic5XdFYrkRy7OReproFIGev4p5tj3NThZrJ6Iu3M1+L2X5et0+duKWndQQ8YcxqnB6TyWV1BLJUs0cdlNGusVJJWQx8jXXYrbYWqx3N8LIxXsXfZzmtafZYJNmoo+lOG3iTUGusvaudv77J4LEtRkfJ4LyVI67mI/mXn37NXc2zdt9tum5QdL+5vzWnrGgmSa78MxmibPNiqSYeOLmrrE+FzJnpJu+Ts37JI3lRF3VWOVem7AtIHy5wr4E6p1dw9pYrU+orWK0imeu3rGlX4hILE6MyU00bH2HO5uye5GSbIxFVHJs7ZUNEzPufvG3DjiTpTx92XvxylnJeF+B83gfa9n5nJ2nwm3Z9+7d9+5NjXwSLMDJdb8Ic5q/WWNzWU1U69p/C5SLOUMDWxULLTZ4WebE20r08xzt1VFairzKiuRO6XTipnFVE8lesk+VX4v9+NDBachkmB4Mai0VnraaX127FaSt5N+UkwU+JjsPjfJJ2k0UU6vTkje5XdFY5W8y8qovU9dj3P3b8LMto3x9y+H6gdnfDfA/ib5Ft3suTtOvxeTm5k7+bb7U18DDAzXJcE6mayPE+S/kpJKWuaMFCaCKLkfVZHXfCrmv5l5lXn5k81NtvSQU/AnUt7Daalt6/RdX6Yne7EZ+vh2RtZA+FsUkE1dZHJK16N3VUc1d9lTbY2cDDAzKLhRncjnNE5nUWrm5nI6byNu8r48W2syds1V8CRNa168iN7RXbqr1Xu+VIXPe52lyd/M5OlqXwDL2NUwapoTvx6TRVZo6ra3ZyRrInatVqPXdFYqK5Nvi7rs4GGBiD/c22snp/iHjszrGfI2NYS1Lsl2PHshdUtwIzlexqOVFj+Cg2YvVEYu73K7dNW0jjs3isJFX1DmYM9k2ucr7teklNjk36IkfO/bZPwupMgREQBx8Nv5PzP5Xtf4zsOPht/J+Z/K9r/GZW/c2v0WOC3gA8xAruZv+D6y05V8aQ1fCGWl8AfX532uVrF3bJ9pyb7r/S5k9RYiu5q6tfWGm6/jWGolhLSeAvr877ezGr5j/tOTvX17/IBYgAAIfWP2I5z+wz/5biYIfWP2I5z+wz/5bjbde8s+cLHFC4D+Qsd/Zo/8KHVbqx3qk1aXdYpmOjfyrsuypsvU5cB/IWO/s0f+FDvPQt/1SjCdL+5vzWnrGgmSa78MxmibPNiqSYeOLmrrE+FzJnpJu+Ts37JI3lRF3VWOVekvjfc/eL+GujNJePu097mfgznhnge3hHZ232ey5O08zfn5ebddtt9l7jXwa8MDKqPBvNWuKmJ1jqPWDc2zCOuLiqcOJjqyRNsIrVZLM1yrK1rV2anK3qiKu6oQt33JmlLfDbWOj0llhr6kzEuYfaYzaSs90iPZHH16NY1ORE37nO7uZTbwMMDMdbcHLeT1Xh9U6Q1D7z9Q46guJWRaLblWxSVyPSGSFXM+K5OZrmuRU3XvRTrfwtyOQz/D3M5bUrspktLS3JZ5nUWReHungfF3MciRI1Hptsjt0aiL16mhgUgUfMcRcvi8pZqQcOdVZSKF6tbcpvxyQzJ/Sb2ltjtv+JqL8hz6V0nPkOIdriHZiuYebI4WDEOwWQii7ev2NieTtHSRSyMXm7Xo1FXZERVXdVRNABaDBL/uZctLTnxNHXa0tPR59NSUaK4hkkkdrwpLPLNN2iLLHz82yIjHfF3cqJsuY8RdMaiw3G/Pai05pi7qDPuyMFilVyWjpH0pnNYxrXpfZZbCzlTm2lfH2jVT07IfZIMZsxIFb4lfzd6n/Jln/KcWQrfEr+bvU/5Ms/5TjquPfWPOPmys8YaOADxWIAAAAAzzRH8kXPyrkv8AXTlgK/oj+SLn5VyX+unLAexfe8tecrPGWDar9zNlM9T1fiKGuX4jTeosoublpJiY5Z2XFdHJ1mV6c0XaRMdycqO2Tl50Qs13gg+9g+LFCTNtSTXrZEdK2n0pK6kyqqo3tPhPic+27e/b0bmpg0YYRjeq+A+a1jLhMdf1o1dJ42fH2m4pmIjSwktXkVFjs8/NGj3M3XzXKiOVEciKTb+AumrPEDWuqbcPhU2qsVHiblZ7fNSNGqyVUX/1GJCi9P8AyW+vppIGGBja+5upUuFujNL4jOWcTmNJTMu4zPxwte9LWz+1kkicuz2yrJJzMVevN39CQzvCPUes+H1zT2ptasyl6xk6d9t6HEMrxQMrzwzdkyJsirs5YV85z1VFeq9yIhqgGGBVNVa2yWnMiytT0TqDUcTokkW3inUkiaqqqci9tZjdzJsi9G7bOTr3olebg7nEvWWj9U3MVltIv0rZtvbj8tFWkfdSes6HdroLEiMRvNv13Vdttk7zTAKDHta8BMhqTUmsLuL1e/BY3WFGKjm6jcdHYmkbHE6JFhmc5Oy3jcqKisf6VTZV3Mi428LrlDMaPrzV8lqCTE6chxaWK2iJMpUsqxyo5r+xtMc3n5WKscvPGnRWqiudv9fAk2YkZPpXiZrGrpfDx5zhXn/G6U4VtNwz8elRkisRVbGkttr0Ru+2yp0VFRFVERVlNOaYsag4kxcRLVS/gJvEr8GuDyUUKzInhCS9sskM0jNl22Rvf6VVO40QFoMQxfucL2mMNpZ2ntX+K9T4B+RbFlZMak0NivcsunkglrrIm6NcrNlR6Luzf07ExpjCW+B2HlpVcHqHX+TzF6xlsrlse2lF2lqRW8znMlniRibI1rWt5kRrERV9ergYYjgMj1Vp7I8bqNL/AGVqDhxndP3osnicvkY6c6JNyvY5OzisSI9isc5rmuVu/Mmy9CKX3Nt7NR62n1LrF+Uy+o3Y2eLIUcaymuPsUlc6GWNvO9HecrV2X1Kiqu/TcQMMd4xO37mx2s/fHZ1/qiXU2Wy2KbhobVGk3HsoV2ypOixRo9/wnbNjer3KvWNqbIibE/itB8R6uJyFe9xRZcuPrthpW49PQxdg9HtcssjVkckrlaitVE5E2cqoiLsqaaBhgZ/wk4WTcN01Hbv5hubzOoMh4xvWIKbacHadmyNEjha53L0YiqquVXKqqqmgAFiKCP0X9lmq/wDjq/5RcymaL+yzVf8Ax1f8ouZo7V739LP/AFhla4gAORiAAAAAAAAAAAAAAAAAADnyFNuRoWaj1VrJ4nROVPQjkVP/ALme0s8zTFCtjMzBbq3KsbYVfHUllhm5UREex7GK1UXbfboqb7KiGlA6bq+i7ibNqKxp1WJZ37/cN91tfMLH0B7/AHDfdbXzCx9A0QG7aLrJOv2ruZ37/cN91tfMLH0B7/cN91tfMLH0DRANousk6/abmd+/3DfdbXzCx9Ae/wBw33W18wsfQNEA2i6yTr9puZ37/cN91tfMLH0B7/cN91tfMLH0DRANousk6/abmd+/3DfdbXzCx9Ae/wBw33W18wsfQNEA2i6yTr9puZ37/cN91tfMLH0B7/cN91tfMLH0DRANousk6/abma1OJOnr9dk9a3NYgf8AFlipzua7rt0VGbKe73+4b7ra+YWPoHn3P7Uj4SYSLfd0LrMD/keyzK1yf3K1U/uNDG0XWSdf7G5nfv8AcN91tfMLH0B7/cN91tfMLH0DRANousk6/abmd+/3DfdbXzCx9Ae/3DfdbXzCx9A0QDaLrJOv2m5nfv8AcN91tfMLH0B7/cN91tfMLH0DRANousk6/abmd+/3DfdbXzCx9Ae/3DfdbXzCx9A0QDaLrJOv2m5nfv8AcN91tfMLH0B7/cN91tfMLH0DRANousk6/abmeN1xjJl5a7L9qZfixQ46dXOX1fE2T8aqietULJorDWMNh5EttbHbtWZrcsbXcyRrI9XIzdO9WpsiqneqKT4Nd5fxas4LEUjzr9ISvIAByIFc1BfSpqrS0K5KColqaxElSSvzvtqkDn8rH/8Alq1Gq5fWiKhYyu6ovLRzOlN8jWoxz5J0D4Z4Od1verYVsUbvtHczWv5vS2NzftgLEAABy5Si3KYy3Se5Wsswvhc5PQjmqm//AFOoFiZiawM2qahZpulXx2Zr26t2tG2Jzo6kssMuybc7JGMVqou2+3RU32VEU9vv9w33W18wsfQNEB37TdzvtWJr5/2ZVhnfv9w33W18wsfQHv8AcN91tfMLH0DRATaLrJOv2m5nfv8AcN91tfMLH0B7/cN91tfMLH0DRANousk6/abmbWuI+Ao1prNi1PXrwsWSSWWlO1jGom6uVVZsiInXdT2N1/hHtRzZrTmqm6KlGfZf/wCw7uOaNXgnxBRy8rfe9kN16dE8Gk9aoWzENVuJpNXvSBiL/wAqDaLrJOv2m5Rvf7hvutr5hY+gPf7hvutr5hY+gaIBtF1knX7Tczv3+4b7ra+YWPoD3+4b7ra+YWPoGiAbRdZJ1+03M79/uG+62vmFj6B6MncZrnF2cLi4bUvhzFrzWJaskUUETt0e5XPaiKvLvs1N1VVb3Ju5NLBY7TYszisWZrHj/aCsQAA89iAAAAAM7ZL7yZbtS/BZ8Ektz269uCtJNG5ssj5Va7kavI5rnOTzu9OVUVVVUR7/AHDfdbXzCx9A0QHftNm1vt2Zr50+ksqx3s79/uG+62vmFj6A9/uG+62vmFj6BogG0XWSdftNzO/f7hvutr5hY+gPf7hvutr5hY+gaIBtF1knX7Tczv3+4b7ra+YWPoD3+4b7ra+YWPoGiAbRdZJ1+03M79/uG+62vmFj6A9/uG+62vmFj6BogG0XWSdftNzO/f7hvutr5hY+gemvxJ09bdM2C3NM6F/ZSpHTncrH7IvK7ZnRdlRdl9aGlGfcI2Ndb19YjXmjsansq13oVWRQRO2/E6NyfjRRtF1knX7Tc/Hv9w33W18wsfQHv9w33W18wsfQNEA2i6yTr9puZ37/AHDfdbXzCx9Ae/3DfdbXzCx9A0QDaLrJOv2m5nfv9w33W18wsfQHv9w33W18wsfQNEA2i6yTr9puZ37/AHDfdbXzCx9Ae/3DfdbXzCx9A0QDaLrJOv2m5nfv9w33W18wsfQPLdd4h6ojHXZHL3NZjrDnL+JEj3U0MDaLrJOv9k3KxorGWYpcplbULqsmSlY+OvJ8eOJjEa3n9Tl8523o3RF6opZwDkvLc3lqbUk7wAGtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABn2iFTRusc/pOdOyrXrM2dxD1VEbK2d6vtxNT+nHO50i/g2Y9t9nbaCQuq9KU9X42OtZfNVsV5Us079RyMsUp2oqNmicqKiORHOaqKite1z2Pa5j3NdV2cR7WiXpT1/FFjYkVGQ6lrNVMZY9SyqqqtR/rbKvJ1RGyPXdGhoQPxDNHYiZLE9skT2o5r2LujkXqiovpQ/YAAAAAAAAAAAAAAAAArut7zsXjaNzxnXxUMWRqNmmsw9o17HzNj7NP6Lnq9Go70KqKvTcsRG6lx93K6eyVPG3WY3Iz15GVbr4GztrzK1eSRY3dHo12y8q9+wEkCO09nKepsFQy1CdLNO5C2aKVGOZzIqb9WuRHNX1tciKi7oqIqKSIAAAAAAAAAAAZ/7oF//ANEdbwbbuuYmxRYiKiKrp2LC1E3RU33kT0KX9rUY1GtTZETZEM/4rqmcu6S0nG7ebKZaG9Oxqru2pSkZZkevT4iyMrxL/aET0mggAAAAAAAAAAAAAAAAAAAAAAAAAAABH53UOL0vjZcjmclUxOPiTeS1enbDEzpv1c5URO5SneULMav+C0ThHy13K3/b2cifWpNaqb80Ua7S2FTp0RGMXf8AjEAn9a6rdprHJHSrtyWfuI6PG4xH8q2ZenVy9VbG3dFe/ZeVvXZV2RfZobSrNF6Xp4pJvCZmLJPZs8vKtizLI6WeVU9HPK97tvwj06V0XFp6efIW7s+az1pjW2cpb25nNT/y42J5sUSL1RjERN+rlc5VctkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH5exsrHMe1Hscmytcm6KnqU/QAz6bg7TxEz7Ojctf0VYc5XrWx7kkx0i+nmpybxN3XvWJI3r6XH5ZqHiFpleXNaao6rqNRVW/pifweddk71p2XbNT/hsSKv9Hp10MAUTG8btHXbsdC5lF09lJF2Zj9Q15MbO9fSjGztZ2n42cyenfYvTXI9qOaqOaqboqdynPkcbTy9OWpfqwXakqcskFiNJI3p6laqKilF8hOlqD1k082/o2XrsmnL0lOBFX0rWavYOX/ijUDQwZ23TXEbAr/s3WWP1HA1P4jUeLbHO/wBX8IqrGxv6Bwbr/WOHcjc9w7tys32db01kYb8LflVsvYSr+JsblA0QGf1uPWhnTsr5DNe9u29eVtbUlabFSOd6mpZZHzf/AB3RfRuXurahvV45680diCROZksTkc1yetFTooHtAAAAAAAAAAEDQltYzUNmhYkv3oLyvuVp3wNWCqiIxrq6yN696q9vOnc5yI5eXZJ448viKmdx8tK9F21eTZVRHuY5rmqjmva5qo5rmuRHNc1UVqoioqKiKcVbLWKWRjx+VdEti3NOtKWtDI2N8TdnNY9V3RsqNcqbcy86ROeiNTdjAmQAAAAAAADizOZpaexVrJZKyynRqxrJNPIvRrU/7/iTqq9EPGbzlHTmLnyOSssqUoERXyv371VGtaiJ1c5zlRqNRFVyqiIiqqIVXE4S9rXJVc9qOo6nSrPSbF4GdGuWF6L5tmx3os23xWIu0e69XO6tDzoXDXcjmchrLNV31MlkY21aNGRNnUaDXK6Njk9EsiqsknqVWM69kjlu4AAAAAAAAAAAAAAAAI7NaixOm6q2cvk6eKrp/wCddsMhZ+dyogEiDO3e6A0LOqpi8zJqV2+yJpqjYyqKv460ciJ+NVRE9KjynagyaomG4baisMXus5SWrQh/va+VZk/RAaIDO0fxWzCL8FpHSrV7lV9nMPT8abVU329G6oi+lfT5XhpqHKsRM5xGzsybqroMPDXx0Tt9um7Y3TJ/dL6fxAX+eeKrC+aaRkMTE5nSSORrWp61Ve4otzjxoOvZkq1dQw527GvK+np+KTKTtX1OjrNkc1fxogr8CNDNsMs3cEzP2mJ5tjUNiXKSIu226OsvkVF29WxeKdKvjq0derBFWrxpsyKFiMY1PUiJ0QCg+UTVWb3TT3DzIoxfiXNSXIsbA7/4t7WdP/lCh+00tr7UHKuY1hWwFdWqjqmmKDe0679FsWe03Tbbq2Ji9Oip6NBAFMwPCHSuBycOV8XOyubhT4PL5meS/cZuu68ksyudGi/0WK1vRNkREQuYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6rNaG5A+CeJk8Micr45Go5rk9SoveUW1wG0LLZks0sEzT1yReZ9rTtiXFSvd63OrOjVy/8W+/pL+AM7dw81ZiHK7A8Rshy97auoqEGRgb8m7EhmX++VQ7OcTMGv8ADNL4TU0CJ1mwuSdVsO9e1ewzkT++f9pogAzx3G3E4xeXUWE1HpV2yK5+SxMkkDOnVHWK/awJt8sm3q3LPprXGnNZxLLgM9jM3G1EVy4+3HPyp8vKq7f3k4VfU/C7R+tJmz53TGJylpvVlqzTY6eNfWyTbmavyoqKBaAZ4vB5uNe5+ndX6p06vVUhbkfD4E+RI7jZka35Gcu3o2CU+KWCavY5HTOro0VOWO5XmxUyp6eaWNZ2Kvd1SJqfIBoYM7dxSzOHXbUPD7UNJiInNcxLYspB8vK2F6zrt8sKfIYFwx/8QvAZvjDqfRGsoYNPVoMxYpYfLvikrxvjZKrGMtMl86KRdurl5URV2c1mygfYJwZ6GpZweRivxyzUZK0jZ44GyOkfGrVRyNSPz1cqb7Izzt+7rsQeu9f1dGUo0axLmTsoq1qqO2RyJtu9ztl5WJunX09ybqYjmtQ5vUsrpMpl7UjXb7Vqsjq9dqepGMXdyf8AGrl+U9jsf4Ze9rjHXDZ58/JfN852fdua1g91jpePOU8vpHQFCz4nXDZZr4ZZYpNo1tXPQ+ZF5X7dWs5dm7qr3v8A6SnyNa0zi7zdrNOOwnql3f8A91Pb4jo/cE/5nftPV/gMf7v/AB/ulYfWgPkvxHR+4J/zO/aPEdH7gn/M79o/gMf7v/H+5WH1oYN7tnjFPwY4AZvI462+nnckrcXjpYXK2SOSTfme1UXdFaxHqjk7l5fkKJ4jo/cE/wCZ37T0z6XxVpWLNRimVi7tWTd3Kvyb9w/gMf7v/H+5WEJ7gvi7qnjaxtbiDjc3lLem6iLic7ahVKMnncrnSuVE57mz0akjlcqxtdsjHLK6b7VPlCtjoqTkfVfYpvTufWsSROT8StcioXrSXFbK6cmZFl5pcvid0R0r281mun9JFRN5UTvVq+d37KqojV5r/wDBL2xZxXVrF4UpP6cV3TwbqDmZkqkmObfbahdRdF26WUkTs1j25ufm7uXbrv3bFR4Z8Z9H8YXZ/wB6WZgzDMLd8BtPhcmyv5GuR7U71jVVc1H7bOWN/Kqom585MU3Si7gqeoOLOidK2Er5jVuExtpV5W1rGQiZM5fU1iu5lX5ETciG8ccJfXlwuJ1LqB2yqjqGBtNhd+KeVjIl/ueQaGDPm6013lVTxbw7XHtc1VR+o81BXVF67btrJZ+T+5fX0Py3FcUcq5q2dQ6ZwEK/Ghx+KmuTf/GaSZjU/viX+4DQz12LMVSB808rIYWJu6SRyNa1PWqr3FAThLdyDVTOcQNW5ZHLuscFuLGsT5GrUiieifjeq/KeyDgJw+ZYZYtaWpZm0zbls5zmyUzV223R9hXu3+XfcD2X+OvD+hPJX992Lu241RH1MbOl2w1V32RYoed/XZfR6FOdOMS5FWpg9EavzaO7nri0xzPxqt18C7fiRfkRS9UMdUxVZtalVhp12fFhrxoxifiROh0gZ4mf4m5ZHeCaRwWDjVPNly+afNKi/LDBCrV6b/8AnftQukuImVanjHX9PFIqru3TuCZG9qerntSWEVe/ryJ+I0MAZ55FaF56PzWpdWZ9ybbtsZyarG5fwoqqwxuRfUrVT5CQwnBfQWnbPhWP0dhYLq99xaMb7DvxyuRXr/epcwB4REaiIiIiJ0REPIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD570T7gvgvot0cq6V8f3GLzeFZyd1lzl9KqzpGv/KfQgA+Xbl+LLZO3brxxwUufwelXhajYoasSqyFjGp0a3lTm2ToiuU9ZyYmq+hRZSl/jqjnVZE9T43Kx3/VqnWfq1mzZsWYs2OEcEtcZDky2WpYHG2chkbMVOlWYsks8zuVrGp6VU6zPuO2mclqrh7PWxcMtuzXt1rjqcEywyWWRTNe6Nr0VFa5UaqoqKi7om3UxvLU2LE2rMVmIYu+jxh0jkMflLkWWVsWMrLctsnqzRSxwpvvJ2b2I9zene1FQ7NO8StN6rykmOxeSSxbZD4QjHQyRpLFvt2kbntRJGbqiczFVOqdepkeY01jdRaJ1rexGn9aeOm4CxSgfqF9uWSRJUVXQxRzPc5y8zGb8qbdU2VSw630pls3qLScNGvPA52msrRfcSNyMryyRQNjR7kTzV5kVURf6K7dxwxf31K0ieHCu+s0/wDcVd+R47Ye7qrTOG05er5N2QyjqVp7q83J2TYpHOdDLsjHqj2NRVark69xqR8/Ye3kMnX4T4RNIZ3E2NP34mX1nx7m1oezqSxq5sqea5quVFRydOvVUVURfoE3dmvLV5FqbU/TuhAAHYOTP8Ib/uhNC5HQLda5TStKnIlxsdJrXxW45VX4KZvRzmMkjc5G8yJ8J1ReVvLH+5a9wdHwet6vi107D6xx2QdV8XRtSVWIkfbdos0L0RiqvPHtvz9zu706vwNrOl1XnLSfxcNOGF3q5nPe7b+5G/8AX5Taj8+/FbNmx2y3h8J/WYhslDae0Zp/SMPY4LBY3CxbbdnjqccDdvVsxEJkA8hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABifFjRcmFydrUFWNXYy0qSXNu6tIiIiybf0HIibr6FRVXo5VTLtQ6Rwer4YY81iaWXihVXxNuQNlRiqnVU5kXY+vFRHIqKm6L3opnua4I4LITunx8trByOVVWOk5qwqv/tvRyN/Ezl/77/U9i/FbFm7i57TG6OE8dTi+a04M6DRqt952D5VVFVPAItlX0fa/KpIYDh5pfSt11zDaexmLtuYsaz06rInq1VRVbuib7bonT5Da3cBJd/N1POifLTjVf+548gc3tRP8yj/aepH4h+HxNYmPTPQw+LNgaT5A5vaif5lH+0eQOb2on+ZR/tNv8V7Hn+E9DD4szngjtQSQzRtlhkarHsem7XNVNlRU9WxUE4MaCRd00bg0X8nxfRN78gc3tRP8yj/aPIHN7UT/ADKP9pha/EuwW/6rVf0noYfFgfkX0D7GYL9XxfRLlHHLLNBUqV32rczuzr1YU3dI7buT0IiJ1VV2RqIqqqIiqafBwEZz/wAJ1Ldez0pBXijX86o7/sXjS2hMNo5r1x1XazI1Gy25nLJNInqV69dvkTZPkOa8/Fuy3NmfYRWfKkfqUh6eH2j00Zp9tWR7Zr071ntSsVVa6Rdujd/tWoiNTonRu+26qWYA+NvLy1e25vLc75AAGsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//Z", "text/plain": [ "" ] @@ -1247,32 +1292,24 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "05ead97d", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Setting defaults ----\n", + "---- Categorize_message ----\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_26385/4164394190.py:6: LangChainBetaWarning: This API is in beta and may change in the future.\n", + "/tmp/ipykernel_19549/336144448.py:7: LangChainBetaWarning: This API is in beta and may change in the future.\n", " async for event in app.astream_events({\"user_input\": question,\"sources\":[\"auto\"], \"audience\" : 'expert'}, version=\"v1\"):\n", - "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "WARNING:langchain_core.callbacks.manager:Error in LogStreamCallbackHandler.on_chain_start callback: ValidationError(model='Run', errors=[{'loc': ('__root__',), 'msg': \"argument of type 'NoneType' is not iterable\", 'type': 'type_error'}])\n", - "WARNING:langchain_core.callbacks.manager:Error in LangChainTracer.on_chain_start callback: ValidationError(model='Run', errors=[{'loc': ('__root__',), 'msg': \"argument of type 'NoneType' is not iterable\", 'type': 'type_error'}])\n", - "WARNING:langchain_core.callbacks.manager:Error in LogStreamCallbackHandler.on_chain_end callback: TracerException('No indexed run ID 27bbc43d-748e-4061-a61a-872ea1e50b7e.')\n", - "WARNING:langchain_core.callbacks.manager:Error in LangChainTracer.on_chain_end callback: TracerException('No indexed run ID 27bbc43d-748e-4061-a61a-872ea1e50b7e.')\n", - "WARNING:langchain_core.callbacks.manager:Error in LogStreamCallbackHandler.on_chain_start callback: ValidationError(model='Run', errors=[{'loc': ('__root__',), 'msg': \"argument of type 'NoneType' is not iterable\", 'type': 'type_error'}])\n", - "WARNING:langchain_core.callbacks.manager:Error in LangChainTracer.on_chain_start callback: ValidationError(model='Run', errors=[{'loc': ('__root__',), 'msg': \"argument of type 'NoneType' is not iterable\", 'type': 'type_error'}])\n", - "WARNING:langchain_core.callbacks.manager:Error in LogStreamCallbackHandler.on_chain_end callback: TracerException('No indexed run ID 81a5385d-b9ff-4ec0-a581-15629901a185.')\n", - "WARNING:langchain_core.callbacks.manager:Error in LangChainTracer.on_chain_end callback: TracerException('No indexed run ID 81a5385d-b9ff-4ec0-a581-15629901a185.')\n", - "WARNING:langchain_core.callbacks.manager:Error in LogStreamCallbackHandler.on_chain_start callback: ValidationError(model='Run', errors=[{'loc': ('__root__',), 'msg': \"argument of type 'NoneType' is not iterable\", 'type': 'type_error'}])\n", - "WARNING:langchain_core.callbacks.manager:Error in LangChainTracer.on_chain_start callback: ValidationError(model='Run', errors=[{'loc': ('__root__',), 'msg': \"argument of type 'NoneType' is not iterable\", 'type': 'type_error'}])\n", - "WARNING:langchain_core.callbacks.manager:Error in LogStreamCallbackHandler.on_chain_end callback: TracerException('No indexed run ID 21a2d759-f3b0-480f-b1ba-52d6ce3ab09d.')\n", - "WARNING:langchain_core.callbacks.manager:Error in LangChainTracer.on_chain_end callback: TracerException('No indexed run ID 21a2d759-f3b0-480f-b1ba-52d6ce3ab09d.')\n", "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n" ] }, @@ -1280,13 +1317,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Cloud formations play a crucial role in modulating the Earth's radiative balance. They can either reflect incoming solar radiation back to space, cooling the Earth, or trap outgoing infrared radiation, contributing to warming. The representation of clouds in climate models is essential for accurately simulating the Earth's energy balance and predicting future climate changes.\n", - "\n", - "In current climate models, the representation of clouds, particularly low-level clouds, is a significant factor influencing the models' equilibrium climate sensitivity (ECS). The ECS of a model is determined by its effective radiative forcing from a doubling of CO2 and the feedbacks from cloud formations. The spread in ECS among different models is mainly attributed to cloud feedbacks, especially the response of low-level clouds [Doc 7].\n", "\n", - "Despite efforts to improve cloud parametrizations and model resolutions, there has been no systematic convergence in model estimates of ECS. In fact, the inter-model spread in ECS for the latest CMIP6 models is larger than for CMIP5 models, indicating ongoing challenges in accurately representing cloud formations in climate models [Doc 7].\n", "\n", - "Overall, the representation of cloud formations in current climate models is crucial for understanding and predicting the Earth's radiative balance and the impacts of climate change. Ongoing research and advancements in model development are essential to improve the accuracy of cloud representations in climate models." + "Output intent categorization: {'intent': 'search'}\n", + "\n" ] } ], @@ -1295,6 +1329,7 @@ "question = \"C'est quoi la recette de la tarte aux pommes ?\"\n", "question = \"C'est quoi l'impact de ChatGPT ?\"\n", "question = \"I am not really sure what you mean. What role do cloud formations play in modulating the Earth's radiative balance, and how are they represented in current climate models?\"\n", + "question = \"What evidence do we have of climate change and are human activities responsible for global warming?\"\n", "events_list = []\n", "async for event in app.astream_events({\"user_input\": question,\"sources\":[\"auto\"], \"audience\" : 'expert'}, version=\"v1\"):\n", " events_list.append(event)\n",