import io import requests import ee import numpy as np import matplotlib.pyplot as plt #Initialize service_account = 'cvimg-355@cvimg-377115.iam.gserviceaccount.com' credentials = ee.ServiceAccountCredentials(service_account, 'biomap/.private-key.json') ee.Initialize(credentials) #delete clouds def maskS2clouds(image): qa = image.select('QA60'); # // Bits 10 and 11 are clouds and cirrus, respectively. cloudBitMask = 1 << 10; cirrusBitMask = 1 << 11; # // Both flags should be set to zero, indicating clear conditions. mask = (qa.bitwiseAnd(cloudBitMask).eq(0))and(qa.bitwiseAnd(cirrusBitMask).eq(0)) return image.updateMask(mask).divide(10000); #find ee_img def extract_ee_img(location,start_date,end_date, width = 0.01 , len = 0.01) : """Extract the earth engine image Args: location (list[float]): start_date (str): the start date for finding an image end_date (str): the end date for finding an image width (float, optional): _description_. Defaults to 0.01. len (float, optional): _description_. Defaults to 0.01. Returns: _type_: _description_ """ # define the polygone polygone =[[[float(location[0])-0.01,float(location[1])+0.01], [float(location[0])-0.01,float(location[1])-0.01], [float(location[0])+0.01,float(location[1])-0.01], [float(location[0])+0.01,float(location[1])+0.01], ]] #define the ee geometry geometry = ee.Geometry.Polygon(polygone, None, False); #extract the dataset dataset = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')\ .filterDate(start_date, end_date)\ .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',1))\ .map(maskS2clouds) return dataset.mean(), geometry # Get URL def get_url(ee_img, geometry, scale=5): """Get the url of a dataset and a geometry Args: ee_img (ee.ImageCollection: meta data on the image geometry (ee.Geometry.Polygon): geometry of the desired landscape scale (int, optional): _description_. Defaults to 5. Returns: str: the url to use to ask the server """ region = geometry # collectionList = ee_img.toList(ee_img.size()) # collectionSize = collectionList.size().getInfo() # for i in xrange(collectionSize): # ee.batch.Export.image.toDrive( # image = ee.Image(collectionList.get(i)).clip(rectangle), # fileNamePrefix = 'foo' + str(i + 1), # dimensions = '128x128').start() url = ee_img.getDownloadURL({ # 'min': 0.0, # 'max': 0.3, 'bands': ['B4', 'B3', 'B2'], 'region' : region, 'scale' : scale, 'format' : 'NPY' }) return url def extract_np_from_url(url): """extract a numpy array based on a url Args: url (str): _description_ Returns: numpyarray: response from earth engine as numpy """ #get the response from url response = requests.get(url) #transform it into numpy data = np.load(io.BytesIO(response.content)) #transform numpy of tuples to 3D numpy temp1 = [] for x in data: temp2 = [] for y in x : temp2.append([z for z in y]) temp1.append(temp2) data = np.array(temp1) return data #Fonction globale def extract_img(location,start_date,end_date, width = 0.01 , len = 0.01,scale=5): """Extract an image of the landscape at the selected longitude and latitude with the selected width and length Args: location (list[float]): [latitude of the center of the landscape, longitude of the center of the landscape] start_date (str): the start date end_date (str): _description_ width (float, optional): _description_. Defaults to 0.01. len (float, optional): _description_. Defaults to 0.01. scale (int, optional): _description_. Defaults to 5. Returns: img: image as numpy array """ ee_img, geometry = extract_ee_img(location, width,start_date,end_date , len) url = get_url(ee_img, geometry, scale) img = extract_np_from_url(url) return img # transform img from numpy to PIL def transform_ee_img(img, min = 0, max=0.3): """Transform an img from numpy to PIL Args: img (numpy array): the original image as a numpy array min (int, optional): _description_. Defaults to 0. max (float, optional): _description_. Defaults to 0.3. Returns: img_test: a PIL image """ img_test=img img_test=np.minimum(img_test*255/max,np.ones(img.shape)*255) img_test=np.uint8((np.rint(img_test)).astype(int)) plt.imshow(img_test) return img_test