from random import randint import cv2 import numpy as np from PIL import Image from torch.utils.data.dataset import Dataset from .utils import cvtColor, preprocess_input def look_image(image_name, image): image = np.array(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) cv2.imshow(image_name, image) cv2.waitKey(0) def get_new_img_size(width, height, img_min_side=600): if width <= height: f = float(img_min_side) / width resized_height = int(f * height) resized_width = int(img_min_side) else: f = float(img_min_side) / height resized_width = int(f * width) resized_height = int(img_min_side) return resized_width, resized_height class MASKGANDataset(Dataset): def __init__(self, train_lines, lr_shape, hr_shape): super(MASKGANDataset, self).__init__() self.train_lines = train_lines self.train_batches = len(train_lines) self.lr_shape = lr_shape self.hr_shape = hr_shape def __len__(self): return self.train_batches def __getitem__(self, index): index = index % self.train_batches image_list = self.train_lines[index].split(' ') image_origin = Image.open(image_list[0]) image_masked = Image.open(image_list[1].split()[0]) image_origin, image_masked = self.get_random_data(image_origin, image_masked, self.hr_shape) image_origin = image_origin.resize((self.hr_shape[1], self.hr_shape[0]), Image.BICUBIC) image_masked = image_masked.resize((self.lr_shape[1], self.lr_shape[0]), Image.BICUBIC) # look_image('origin', image_origin) # look_image('masked', image_masked) image_origin = np.transpose(preprocess_input(np.array(image_origin, dtype=np.float32), [0.5,0.5,0.5], [0.5,0.5,0.5]), [2,0,1]) image_masked = np.transpose(preprocess_input(np.array(image_masked, dtype=np.float32), [0.5,0.5,0.5], [0.5,0.5,0.5]), [2,0,1]) return np.array(image_masked), np.array(image_origin) def rand(self, a=0, b=1): return np.random.rand()*(b-a) + a def get_random_data(self, image_origin, image_masked, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True): #------------------------------# # 读取图像并转换成RGB图像 #------------------------------# image_origin = cvtColor(image_origin) image_masked = cvtColor(image_masked) #------------------------------------------# # 色域扭曲 #------------------------------------------# hue = self.rand(-hue, hue) sat = self.rand(1, sat) if self.rand()<.5 else 1/self.rand(1, sat) val = self.rand(1, val) if self.rand()<.5 else 1/self.rand(1, val) x = cv2.cvtColor(np.array(image_origin,np.float32)/255, cv2.COLOR_RGB2HSV) x[..., 1] *= sat x[..., 2] *= val x[x[:,:, 0]>360, 0] = 360 x[:, :, 1:][x[:, :, 1:]>1] = 1 x[x<0] = 0 image_data_origin = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255 x = cv2.cvtColor(np.array(image_masked,np.float32)/255, cv2.COLOR_RGB2HSV) x[..., 1] *= sat x[..., 2] *= val x[x[:,:, 0]>360, 0] = 360 x[:, :, 1:][x[:, :, 1:]>1] = 1 x[x<0] = 0 image_data_masked = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255 return Image.fromarray(np.uint8(image_data_origin)), Image.fromarray(np.uint8(image_data_masked)) def MASKGAN_dataset_collate(batch): images_l = [] images_h = [] for img_l, img_h in batch: images_l.append(img_l) images_h.append(img_h) return np.array(images_l), np.array(images_h)