import math import torch from torch import nn class DenseResidualBlock(nn.Module): """ 密集连接型残差网络 """ def __init__(self, filters, res_scale=0.2): super(DenseResidualBlock, self).__init__() self.res_scale = res_scale def block(in_features, non_linearity=True): layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)] if non_linearity: layers += [nn.GELU()] return nn.Sequential(*layers) self.b1 = block(in_features=1 * filters) self.b2 = block(in_features=2 * filters) self.b3 = block(in_features=3 * filters) self.b4 = block(in_features=4 * filters) self.b5 = block(in_features=5 * filters, non_linearity=False) self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5] def forward(self, x): inputs = x for block in self.blocks: out = block(inputs) inputs = torch.cat([inputs, out], 1) return out.mul(self.res_scale) + x class ResidualInResidualDenseBlock(nn.Module): def __init__(self, filters, res_scale=0.2): super(ResidualInResidualDenseBlock, self).__init__() self.res_scale = res_scale self.dense_blocks = nn.Sequential( DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters) ) def forward(self, x): return self.dense_blocks(x).mul(self.res_scale) + x class UpsampleBLock(nn.Module): def __init__(self, in_channels, up_scale): super(UpsampleBLock, self).__init__() self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, padding=1) self.pixel_shuffle = nn.PixelShuffle(up_scale) self.gelu = nn.GELU() def forward(self, x): x = self.conv(x) x = self.pixel_shuffle(x) x = self.gelu(x) return x class Generator(nn.Module): def __init__(self, scale_factor, channels=3, filters=64, num_res_blocks=6): super(Generator, self).__init__() upsample_block_num = int(math.log(scale_factor, 2)) # 第一个卷积层 self.conv1 = nn.Conv2d(channels, filters, kernel_size=3, stride=1, padding=1) # 密集残差连接块 self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)]) # 第二个卷积层 self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) self.upsample = [UpsampleBLock(filters, 2) for _ in range(upsample_block_num)] self.upsample = nn.Sequential(*self.upsample) # 输出卷积层 self.conv3 = nn.Sequential( nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1), nn.GELU(), nn.Conv2d(filters, channels, kernel_size=3, stride=1, padding=1) ) def forward(self, x): out1 = self.conv1(x) out = self.res_blocks(out1) out2 = self.conv2(out) out = torch.add(out1, out2) upsample = self.upsample(out) out = self.conv3(upsample) return out class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.GELU(), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.GELU(), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.GELU(), nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(128), nn.GELU(), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.GELU(), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(256), nn.GELU(), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.GELU(), nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(512), nn.GELU(), nn.AdaptiveAvgPool2d(1), nn.Conv2d(512, 1024, kernel_size=1), nn.GELU(), nn.Conv2d(1024, 1, kernel_size=1) ) def forward(self, x): batch_size = x.size(0) return torch.sigmoid(self.net(x).view(batch_size)) if __name__ == "__main__": from torchsummary import summary # 需要使用device来指定网络在GPU还是CPU运行 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Generator(8).to(device) summary(model, input_size=(3,12,24))